Neisseria meningitidis pili are filamentous protein structures that are essential adhesins in capsulate bacteria. Pili of adhesion variants of meningococcal strain C311 contain glycosyl residues on pilin (PilE), their major structural subunit. Despite the presence of three potential N-linked glycosylation sites, none appears to be occupied in these pilins. Instead, a novel O-linked trisaccharide substituent, not previously found as a constituent of glycoproteins, is present within a peptide spanning amino acid residues 45 to 73 of the PilE molecule. This structure contains a terminal 1-4-linked digalactose moiety covalently linked to a 2,4-diacetamido-2,4,6-trideoxyhexose sugar which is directly attached to pilin. Pilins derived from galactose epimerase (galE) mutants lack the digalactosyl moiety, but retain the diacetamidotrideoxyhexose substitution. Both parental (#3) pilins and those derived from a hyper-adherent variant (#16) contained identical sugar substitutions in this region of pilin, and galE mutants of #3 were similar to the parental phenotype in their adherence to host cells. These studies have confirmed our previous observations that meningococcal pili are glycosylated and provided the first structural evidence for the presence of covalently linked carbohydrate on pili. In addition, they have revealed a completely novel protein/saccharide linkage.
SummaryThe human pathogens Neisseria meningitidis and Neisseria gonorrhoeae express a family of variable outer membrane opacity-associated (Opa) proteins that recognize multiple human cell surface receptors. Most Opa proteins target the highly conserved N-terminal domain of the CD66 family of adhesion molecules, although a few also interact with heparan sulphate proteoglycans. In this study, we observed that at least two Opa proteins of a N. meningitidis strain C751 have the dual capacity to interact with both receptors. In addition, all three Opa proteins of C751 bind equally well to HeLa cells transfected with cDNA encoding the carcinoembryonic antigen [CEA (CD66e)] subgroup of the CD66 family, but show distinct tropism for CGM1-(CD66d) and NCA (CD66c)-expressing cells. Because the C751 Opa proteins make up distinct structures via the surface-exposed hypervariable domains (HV-1 and HV-2), these combinations appear to be involved in tropism for the distinct CD66 subgroups. To de®ne the determinants of receptor recognition, we used mutant proteins of biliary glycoprotein [BGP (CD66a)] carrying substitutions at several predicted exposed sites in the N-domain and compared their interactions with several Opa proteins of both N. meningitidis and N. gonorrhoeae. The observations applied to the molecular model of the BGP N-domain that we constructed show that the binding of all Opa proteins tested occurs at the non-glycosylated (CFG) face of the molecule and, in general, appears to require Tyr-34 and Ile-91. Further, ef®cient interaction of distinct Opa proteins depends on different non-adjacent amino acids. In the three-dimensional model, these residues lie in close proximity to Tyr-34 and Ile-91 at the CFG face, making continuous binding domains (adhesiotopes). The epitope of the monoclonal antibody YTH71.3 that inhibits Opa/CD66 interactions was also identi®ed within the Opa adhesiotopes on the N-domain. These studies de®ne the molecular basis that directs the Opa speci®city for the CD66 family and the rationale for tropism of the Opa proteins for the CD66 subgroups. NomenclatureOpacity-associated (Opa) proteins of distinct strains have been called OpaA, B, X, etc. In this study, because Opa proteins of the strain C751 are primarily studied, these have been referred to without a suf®x, whereas others have been referred to with the suf®x specifying the strain, e.g. OpaA FA1090 . The Opa protein of the strain MC58 studied has been termed OpaX in our previous investigations (McNeil and Virji, 1997) and this nomenclature is maintained. It should be noted that Neisseria gonorrhoeae (Ng) Opa proteins were initially called`P.II' and those of Neisseria meningitidis (Nm)`Class 5 proteins . The unifying term Opa replaces these nomenclatures and is derived from the fact that most Opa expression results in opaque colony phenotype (Hitchcock, 1989).The nomenclature for the members of the carcinoembryonic antigen family is clari®ed in Fig. 3. The term CD66 is reserved for the CEA family. The subgroups within the family are refer...
Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/ B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa-CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.