Malarial infection in naive individuals induces a robust innate immune response. In the recently described model of innate immune memory, an initial stimulus primes the innate immune system to either hyperrespond (termed training) or hyporespond (tolerance) to subsequent immune challenge. Previous work in both mice and humans demonstrated that infection with malaria can both serve as a priming stimulus and promote tolerance to subsequent infection. In this study, we demonstrate that initial stimulation with -infected RBCs or the malaria crystal hemozoin induced human adherent PBMCs to hyperrespond to subsequent ligation of TLR2. This hyperresponsiveness correlated with increased H3K4me3 at important immunometabolic promoters, and these epigenetic modifications were also seen in Kenyan children naturally infected with malaria. However, the use of epigenetic and metabolic inhibitors indicated that the induction of trained immunity by malaria and its ligands may occur via a previously unrecognized mechanism(s).
SUMMARYMalaria is one of the most serious infectious diseases with most of the severe disease
caused by Plasmodium falciparum (Pf). Naturally acquired immunity
develops over time after repeated infections and the development of antimalarial
antibodies is thought to play a crucial role. Neonates and young infants are relatively
protected from symptomatic malaria through mechanisms that are poorly understood. The
prevailing paradigm is that maternal antimalarial antibodies transferred to the fetus in
the last trimester of pregnancy protect the infant from early infections. These
antimalarial antibodies wane by approximately 6 months of age leaving the infant
vulnerable to malaria, however direct evidence supporting this epidemiologically based
paradigm is lacking. As infants are the target population for future malaria vaccines,
understanding how they begin to develop immunity to malaria and the gaps in their
responses is key. This review summarizes the antimalarial antibody responses detected in
infants and how they change over time. We focus primarily on Pf antibody responses and
will briefly mention Plasmodium vivax responses in infants.
VI.Monocytes are innate immune cells essential for host protection against malaria. Upon activation, monocytes function to help reduce parasite burden through phagocytosis, cytokine production, and antigen presentation. However, monocytes have also been implicated in the pathogenesis of severe disease through production of damaging inflammatory cytokines resulting in systemic inflammation and vascular dysfunction. Understanding the molecular pathways influencing the balance between protection and pathology is critical. In this review, we discuss recent data regarding the role of monocytes in human malaria, including studies of innate sensing of the parasite, immunometabolism, and innate immune training. Knowledge gained from these studies may guide rational development of novel antimalarial therapies and inform vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.