Activated microglia surrounding amyloid -containing senile plaques synthesize interleukin-1, an inflammatory cytokine that has been postulated to contribute to Alzheimer's disease pathology. Studies have demonstrated that amyloid  treatment causes increased cytokine release in microglia and related cell cultures. The present work evaluates the specificity of this cellular response by comparing the effects of amyloid  to that of amylin, another amyloidotic peptide. Both lipopolysaccharide-treated THP-1 monocytes and mouse microglia showed significant increases in mature interleukin-1 release 48 h following amyloid  or human amylin treatment, whereas nonfibrillar rat amylin had no effect on interleukin-1 production by THP-1 cells. Lipopolysaccharide-stimulated THP-1 cells treated with amyloid  or amylin also showed increased release of the proinflammatory cytokines tumor necrosis factor-␣ and interleukin-6, as well as the chemokines interleukin-8 and macrophage inflammatory protein-1␣ and -1. THP-1 cells incubated with fibrillar amyloid  or amylin in the absence of lipopolysaccharide also showed significant increases of both interleukin-1 and tumor necrosis factor-␣ mRNA. Furthermore, treatment of THP-1 cells with amyloid fibrils resulted in an elevated expression of the immediate-early genes c-fos and junB. These studies provide further evidence that fibrillar amyloid peptides can induce signal transduction pathways that initiate an inflammatory response that is likely to contribute to Alzheimer's disease pathology.
Endemic Burkitt lymphoma (eBL) is the most common childhood cancer in equatorial Africa and is linked to Epstein-Barr virus (EBV) and Plasmodium falciparum coinfections early in life. Epstein-Barr nuclear antigen 1 (EBNA1) is the sole viral latent antigen expressed in BL tumors. Loss of EBNA1-specific immune surveillance could allow eBL emergence. Therefore, EBNA1-specific T cell responses were analyzed by IFN-c ELISPOT in Kenyan children with eBL and compared to healthy children with divergent malaria exposure. Significantly fewer children with eBL, 16% (7/44) had EBNA1-specific IFN-c responses in contrast to healthy children living in a malaria holoendemic area or in an area with sporadic malaria transmission, 67% (40/60) and 72% (43/60) responders, respectively (p < 0.003). Children with eBL maintained IgG 1 dominated antibody responses to EBNA1 similar to healthy children suggesting a selective loss of IFN-c secreting EBNA1-specific T cells in the presence of intact humoral immunity. CD81 T cell responses to EBV lytic and latent antigens not expressed in the tumors were similarly robust in eBL patients compared to healthy children. In addition, CD41 T cell responses to a malaria protein, merozoite surface protein 1, were present in lymphoma patients. This study demonstrates a selective loss of EBNA1-specific T cell responses in children with eBL and suggests a potential immunotherapeutic target for this EBV-associated lymphoma. '
Naturally acquired immunity to Plasmodium falciparum malaria in malaria holoendemic areas is characterized by the gradual, age-related development of protection against high-density parasitemia and clinical malaria. Animal studies, and less commonly, observations of humans with malaria, suggest that T-cell responses are important in the development and maintenance of this immunity, which is mediated primarily by antibodies that slow repeated cycles of merozoites through erythrocytes. To advance our rather limited knowledge on human T-cell immunity to blood stage malaria infection, we evaluated CD4 and CD8 T-cell effector memory subset responses to the 42 kDa C-terminal fragment of Merozoite Surface Protein 1 (MSP142), a malaria vaccine candidate, by 49 healthy 0.5 to ≥18 year old residents of a holoendemic area in western Kenya. The proportion of individuals with peripheral blood mononuclear cell MSP142 driven IFN-γ ELISPOT responses increased from 20% (2/20) among 0.5–1 year old children to 90% (9/10) of adults ≥18 years (P = 0.01); parallel increases in the magnitude of IFN-γ responses were observed across all age groups (0.5, 1, 2, 5 and ≥18 years, P = 0.001). Less than 1% of total CD4 and CD8 T-cells from both children and adults produced IFN-γ in response to MSP142. However, adults had higher proportions of MSP142 driven IFN-γ secreting CD4 and CD8 effector memory (CD45RA− CD62L−) T-cells than children (CD4: 50.9% vs. 28.8%, P = 0.036; CD8: 52.1% vs. 18.3%, respectively P = 0.009). In contrast, MSP142 driven IFN-γ secreting naïve-like, transitional (CD45RA+ CD62L+) CD4 and CD8 cells were the predominant T-cell subset among children with significantly fewer of these cells in adults (CD4: 34.9% vs. 5.1%, P = 0.002; CD8: 47.0% vs. 20.5%, respectively, P = 0.030). These data support the concept that meaningful age-related differences exist in the quality of T-cell immunity to malaria antigens such as MSP1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.