is one of the high-energy positive electrode (cathode) materials for next generation Li-ion batteries. However, compared to the structurally similar LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC111), it can suffer from a shorter lifetime due to its higher surface reactivity. This work studied and compared the formation of surface contaminations on NMC811 and NMC111 when stored under ambient conditions using electrochemical cycling, Raman spectroscopy, and X-ray photoelectron spectroscopy. NMC811 was found to develop a surface layer of up to ∼10 nm thickness that was mostly composed of nickel carbonate species mixed with minor quantities of hydroxide and water after ambient storage for 1 year, while no significant changes were observed on the NMC111 surface. The amount of carbonate species was quantified by gas chromatographic (GC) detection of carbon dioxide generated when the NMC particles were dispersed in hydrochloric acid. Surface impurity species formed on NMC811 upon ambient storage not only lead to a significant delithiation voltage peak in the first charge, but also markedly reduce the cycling stability of NMC811-graphite cells due to significantly growing polarization of the NMC811 electrode.
Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for manmade materials. Here, we show that a simple confined selfassembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies-potentially as more efficient mimics of structural color as it occurs in nature.self-assembly | colloids | photonic crystal | structural color | hierarchy H ierarchical design principles, i.e., the structuration of material over multiple length scales, are ubiquitously used in nature to maximize functionality from a limited choice of available components. Hierarchically structured materials often provide better performance than their unstructured counterparts and novel properties can arise solely from the multiscale structural arrangement. Examples can be found in the extreme water repellency of the lotus leaf (1); the outstanding mechanical stability and toughness of sea creatures such as sea sponges (2) and abalone shells (3); and the bright coloration found in beetles, birds, and butterflies (4, 5).To achieve the strongest visual effects, many organisms combine optical effects arising from light interacting with structured matter at different length scales (6). Structural periodicity on the scale of visible light wavelengths can result in regular optical density variations that give rise to bright, iridescent colors due to pronounced interference effects (4). At the micron scale, regular structural features act as diffraction gratings that produce vivid, rainbow coloration (7) and are used to control scatteri...
Methyl formate is produced from the photo-oxidation of methanol on preoxidized TiO(2)(110). We demonstrate that two consecutive photo-oxidation steps lead to methyl formate using mass spectrometry and scanning tunneling microscopy. The first step in methanol oxidation is formation of methoxy by the thermal dissociation of the O-H bond to yield adsorbed CH(3)O and water. Formaldehyde is produced via hole-mediated oxidation of adsorbed methoxy in the first photochemical step. Next, transient HCO is made photochemically from formaldehyde. The HCO couples with residual methoxy on the surface to yield methyl formate. Exposure of the titania surface to O(2) is required for these photo-oxidation steps in order to heal surface and near-surface defects that can serve as hole traps. Notably, residual O adatoms are not required for photochemical production of methyl formate or formaldehyde. All O adatoms react thermally with methanol to form methoxy and gaseous water at rt, leaving a surface devoid of O adatoms. The mechanism provides insight into the photochemistry of TiO(2) and suggests general synthetic pathways that are the result of the ability to activate both alkoxides and aldehydes using photons.
Nature evolved a variety of hierarchical structures that produce sophisticated functions. Inspired by these natural materials, colloidal self-assembly provides a convenient way to produce structures from simple building blocks with a variety of complex functions beyond those found in nature. In particular, colloid-based porous materials (CBPM) can be made from a wide variety of materials. The internal structure of CBPM also has several key attributes, namely porosity on a sub-micrometer length scale, interconnectivity of these pores, and a controllable degree of order. The combination of structure and composition allow CBPM to attain properties important for modern applications such as photonic inks, colorimetric sensors, self-cleaning surfaces, water purification systems, or batteries. This review summarizes recent developments in the field of CBPM, including principles for their design, fabrication, and applications, with a particular focus on structural features and materials' properties that enable these applications. We begin with a short introduction to the wide variety of patterns that can be generated by colloidal self-assembly and templating processes. We then discuss different applications of such structures, focusing on optics, wetting, sensing, catalysis, and electrodes. Different fields of applications require different properties, yet the modularity of the assembly process of CBPM provides a high degree of tunability and tailorability in composition and structure. We examine the significance of properties such as structure, composition, and degree of order on the materials' functions and use, as well as trends in and future directions for the development of CBPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.