The production of high-performance carbon nanotube (CNT) materials demands understanding of the growth behavior of individual CNTs as well as collective effects among CNTs. We demonstrate the first use of grazing incidence small-angle X-ray scattering to monitor in real time the synthesis of CNT films by chemical vapor deposition. We use a custom-built cold-wall reactor along with a high-speed pixel array detector resulting in a time resolution of 10 msec. Quantitative models applied to time-resolved X-ray scattering patterns reveal that the Fe catalyst film first rapidly dewets into well-defined hemispherical particles during heating in a reducing atmosphere, and then the particles coarsen slowly upon continued annealing. After introduction of the carbon source, the initial CNT diameter distribution closely matches that of the catalyst particles. However, significant changes in CNT diameter can occur quickly during the subsequent CNT self-organization process. Correlation of time-resolved orientation data to X-ray scattering intensity and height kinetics suggests that the rate of self-organization is driven by both the CNT growth rate and density, and vertical CNT growth begins abruptly when CNT alignment reaches a critical threshold. The dynamics of CNT size evolution and self-organization vary according to the catalyst annealing conditions and substrate temperature. Knowledge of these intrinsically rapid processes is vital to improve control of CNT structure and to enable efficient manufacturing of high-density arrays of long, straight CNTs.
We have developed calibration and data processing techniques optimized specifically for photon-integrating pixel array detectors (PADs). Primary effects to be calibrated are pixel gain variation and pixel area variation. Gain variations originate in pixel electronics and may be corrected for via a multiplicative factor. In contrast, area variations result from doping inhomogeneities in the sensor diode, which induce lateral fields that disturb the path of charge carriers as they traverse the diode, resulting in variation in the area mapped to each pixel, depending on the x-ray energy. Methods for measuring both effects are described. Additionally, the single-photon sensitivity used in the gain calibration enables flexible thresholding of events in low-fluence data.
Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128  128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 ms readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2  10 7 10 keV X-rays, a maximum flux rate of 10 8 X-rays pixel À1 s À1, and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiberoptically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm  19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements.
The fabrication and testing of a prototype deep-depletion direct-conversion X-ray CCD detector are described. The device is fabricated on 600 mm-thick high-resistivity silicon, with 24  24 mm pixels in a 4k  4k pixel format. Calibration measurements and the results of initial protein crystallography experiments at the Cornell High Energy Synchrotron Source (CHESS) F1 beamline are described, as well as suggested improvements for future versions of the detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.