The physiological role of the platelet-secreted protein thrombospondin (TSP) is poorly understood, although it has been postulated to be involved in platelet aggregation and cellular adhesion. In this report, TSP isolated from human platelets was found to promote, in vitro, the cell-substratum adhesion of a variety of cells, including platelets, melanoma cells, muscle cells, endothelial cells, fibroblasts, and epithelial cells. The adhesion-promoting activity of TSP was species independent, specific, and not due to contamination by fibronectin, vitronectin, laminin, or platelet factor 4. The cell surface receptor for TSP is protein in nature and appears distinct from that for fibronectin.
press 23 1 61 -64 400 408 Microhiol. 34, 777 782 289-301 Vol. 13
Thrombospondin (TSP), isolated from human platelets, promotes aggregation of both nonstimulated platelets and platelets stimulated with thrombin or ADP. The TSP-promoted aggregation is specific since a monoclonal antibody against TSP inhibits the effect of exogenously added TSP and inhibits thrombin-induced platelet aggregation in the absence of added TSP. Several lines of evidence suggest that TSP mediates its effect on aggregation of nonstimulated and stimulated platelets through different platelet-surface receptor systems. The TSP- promoted aggregation of nonstimulated platelets was inhibited by a monoclonal antibody to platelet glycoprotein IV (GPIV), but not by a monoclonal antibody to the fibrinogen receptor, GPIIb-IIIa. In contrast, the antibody to GPIIb-IIIa totally inhibited the TSP- potentiated aggregation of thrombin-stimulated platelets, whereas the antibody to GPIV has no effect. Thus, these studies suggest that TSP promotes platelet aggregation by at least two mechanisms--one dependent on and one independent of the platelet fibrinogen receptor system.
A series of anti-human placental uracil DNA glycosylase monoclonal antibodies was used to screen a human placental cDNA library in phage lambda gt11. Twenty-seven immunopositive plaques were detected and purified. One clone containing a 1.2-kilobase (kb) human cDNA insert was chosen for further study by insertion into pUC8. The resultant recombinant plasmid selected by hybridization a human placental mRNA that encoded a 37-kDa polypeptide. This protein was immunoprecipitated specifically by an anti-human placental uracil DNA glycosylase monoclonal antibody. RNA blot-hybridization (Northern) analysis using placental poly(A)+ RNA or total RNA from four different human fibroblast cell strains revealed a single 1.6-kb transcript. Genomic blots using DNA from each cell strain digested with either EcoRI or Pst I revealed a complex pattern of cDNA-hybridizing restriction fragments. The genomic analysis for each enzyme was highly similar in all four human cell strains. In contrast, a single band was observed when genomic analysis was performed with the identical DNA digests with an actin gene probe. During cell proliferation there was an increase in the level of glycosylase mRNA that paralleled the increase in uracil DNA glycosylase enzyme activity. The isolation of the human uracil DNA glycosylase gene permits an examination of the structure, organization, and expression of a human DNA repair gene.
Thrombospondin (TSP), isolated from human platelets, promotes aggregation of both nonstimulated platelets and platelets stimulated with thrombin or ADP. The TSP-promoted aggregation is specific since a monoclonal antibody against TSP inhibits the effect of exogenously added TSP and inhibits thrombin-induced platelet aggregation in the absence of added TSP. Several lines of evidence suggest that TSP mediates its effect on aggregation of nonstimulated and stimulated platelets through different platelet-surface receptor systems. The TSP- promoted aggregation of nonstimulated platelets was inhibited by a monoclonal antibody to platelet glycoprotein IV (GPIV), but not by a monoclonal antibody to the fibrinogen receptor, GPIIb-IIIa. In contrast, the antibody to GPIIb-IIIa totally inhibited the TSP- potentiated aggregation of thrombin-stimulated platelets, whereas the antibody to GPIV has no effect. Thus, these studies suggest that TSP promotes platelet aggregation by at least two mechanisms--one dependent on and one independent of the platelet fibrinogen receptor system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.