In the present work, silver nanoparticles were synthesized using an easy, simple, and environment-friendly method based on principles of green chemistry in the absence of a sophisticated laboratory, and their anti-cancer properties were studied. Silver nanoparticles were synthesized using electrolytic deposition. As-synthesized nanoparticles were capped using black tea leaf extract. MTT assay was used to investigate anti-cancer activity. X-ray diffraction graphs show highly pure as-synthesized silver nanoparticles. Transmission electron microscopy images show well-dispersed spherical nanoparticles, with an average size of 9 and 15 nm, corresponding to different values of parameters used in the synthesis. For the MCF-7 cancer cell lines, 100% growth inhibition is obtained. The 50% growth inhibition concentration values against MCF-7 cancer cell lines were obtained at 70- and 30-fold dilutions of colloidal silver of almost the same concentration, 178 μg/ml, for both configurations. Silver nanoparticles can be synthesized, and their morphology can be tuned using the electrolytic deposition method with black tea leaf extract as capping agent. Silver nanoparticles with an average size of 9 nm are more effective those with an average size of 15 nm. The synthesis method is faster, cheaper, and environment friendly and renders a treatment option that can have high accessibility, reduced harmful side effects, and increased economic benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.