We examined the effect of high salinity wastewater (brine) from oil and natural gas drilling on freshwater mussels in the Allegheny River, Pennsylvania, during 2012. Mussel cages (N = 5 per site) were deployed at two sites upstream and four sites downstream of a brine treatment facility on the Allegheny River. Each cage contained 20 juvenile northern riffleshell mussels Epioblasma torulosa rangiana). Continuous specific conductance and temperature data were recorded by water quality probes deployed at each site. To measure the amount of mixing throughout the entire study area, specific conductance surveys were completed two times during low-flow conditions along transects from bank to bank that targeted upstream (reference) reaches, a municipal wastewater treatment plant discharge upstream of the brine-facility discharge, the brine facility, and downstream reaches. Specific conductance data indicated that high specific conductance water from the brine facility (4,000–12,000 µS/cm; mean 7,846) compared to the reference reach (103–188 µS/cm; mean 151) is carried along the left descending bank of the river and that dilution of the discharge via mixing does not occur until 0.5 mi (805 m) downstream. Juvenile northern riffleshell mussel survival was severely impaired within the high specific conductance zone (2 and 34% at and downstream of the brine facility, respectively) and at the municipal wastewater treatment plant (21%) compared to background (84%). We surveyed native mussels (family Unionidae) at 10 transects: 3 upstream, 3 within, and 4 downstream of the high specific conductance zone. Unionid mussel abundance and diversity were lower for all transects within and downstream of the high conductivity zone compared to upstream. The results of this study clearly demonstrate in situ toxicity to juvenile northern riffleshell mussels, a federally endangered species, and to the native unionid mussel assemblage located downstream of a brine discharge to the Allegheny River.
We measured concentrations of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) in northern leopard frogs collected from the Green Bay ecosystem and explored the catalytic activity of hepatic cytochrome P450-associated monooxygenase (P450 enzyme) as a biomarker for exposure to aryl hydrocarbon receptor (AhR) agonists. The two hypotheses tested were PCH concentrations in northern leopard frogs would be positively correlated with sediment polychlorinated hydrocarbon (PCH) levels in wetland habitats along a contamination gradient and hepatic ethoxyresorufin-O-deethylase (EROD) activity of northern leopard frogs, which is presumably mediated by aryl hydrocarbon receptor (AhR), would be positively correlated with PCH concentrations in frog carcasses (whole body minus liver) from different collection sites. In 1994 to 1995, frogs from seven sites along the lower Fox River and Green Bay, USA, were assayed for hepatic EROD activities and whole carcass concentrations of PCBs, PCDDs, and PCDFs. Tissue total PCB concentrations ranging from 3 to 154 ng/g were significantly correlated with sediment PCB levels. Only one PCDD and two PCDFs at concentrations of 6 to 8 pg/g were found in the frogs collected from one of the sites. The EROD activity in frogs ranging from 186 to 270 pmol/min/mg protein was not significantly correlated with frog body weight and was similar among sites except for Peter's Marsh. No significant correlation was found between EROD activity and carcass PCB concentration. This result was consistent with the fact that the frogs collected from the Green Bay ecosystem had relatively low PCB concentrations compared with what was required for induction in the laboratory (ED50 for EROD is between 700 and 2,300 ng/g).
We measured concentrations of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) in northern leopard frogs collected from the Green Bay ecosystem and explored the catalytic activity of hepatic cytochrome P450-associated monooxygenase (P450 enzyme) as a biomarker for exposure to aryl hydrocarbon receptor (AhR) agonists. The two hypotheses tested were PCH concentrations in northern leopard frogs would be positively correlated with sediment polychlorinated hydrocarbon (PCH) levels in wetland habitats along a contamination gradient and hepatic ethoxyresorufin-O-deethylase (EROD) activity of northern leopard frogs, which is presumably mediated by aryl hydrocarbon receptor (AhR), would be positively correlated with PCH concentrations in frog carcasses (whole body minus liver) from different collection sites. In 1994 to 1995, frogs from seven sites along the lower Fox River and Green Bay, USA, were assayed for hepatic EROD activities and whole carcass concentrations of PCBs, PCDDs, and PCDFs. Tissue total PCB concentrations ranging from 3 to 154 ng/g were significantly correlated with sediment PCB levels. Only one PCDD and two PCDFs at concentrations of 6 to 8 pg/g were found in the frogs collected from one of the sites. The EROD activity in frogs ranging from 186 to 270 pmol/min/mg protein was not significantly correlated with frog body weight and was similar among sites except for Peter's Marsh. No significant correlation was found between EROD activity and carcass PCB concentration. This result was consistent with the fact that the frogs collected from the Green Bay ecosystem had relatively low PCB concentrations compared with what was required for induction in the laboratory (ED50 for EROD is between 700 and 2,300 ng/g).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.