In intensively managed landscapes, interactions between surface (tillage) and subsurface (tile drainage) management with prevailing climate/weather alter landscape characteristics, transport pathways, and transformation rates of surface/ subsurface water, soil/sediment, and particulate/dissolved nutrients. To capture the high spatial and temporal variability of constituent transport and residence times in the critical zone (between the bedrock and canopy) of these altered landscapes, both storm event and continuous measurements are needed. The Intensively Managed Landscapes Critical Zone Observatory (IML-CZO) is comprised of three highly characterized, well instrumented, and representative watersheds (i.e., Clear Creek, Iowa; Upper Sangamon River, Illinois; and Minnesota River, Minnesota). It is organized to quantify the heterogeneity in structure and dynamic response of critical zone processes to human activities in the context of the glacial and management (anthropogenic) legacies. Observations of water, sediment, and nutrients are made at nested points of the landscape in the vertical and lateral directions during and between storm events (i.e., continuously). The measurements and corresponding observational strategy are organized as follows. First, reference measurements from surface soil and deep core extractions, geophysical surveys, lidar, and hyperspectral data, which are common across all Critical Zone Observatories, are available. The reference measurements include continuous quantification of energy, water, solutes, and sediment fluxes. The reference measurements are complemented with event-based measurements unique to IML-CZO. These measurements include water table fluctuations, enrichment ratios, and roughness as well as bank erosion, hysteresis, sediment sources, and lake/floodplain sedimentation. The coupling of reference and event-based measurements support testing of the central hypothesis (i.e., system shifts from transformer to transporter in IML-CZO due to the interplay between management and weather/climate). Data collected since 2014 are available through a data repository and through the Geodashboard interface, which can be used for process-based model simulations.
We examined the impact of three different sample preparation methods on bulk soil geochemistry data obtained from a hand‐held, portable X‐ray fluorescence (pXRF) spectrometer. We generated data from a soil core recovered from the surface, downward into unaltered loess, and into a buried soil at a site in eastern Iowa. Samples were scanned (i) directly from field‐moist soil cores; (ii) after drying, grinding, and being loosely massed in plastic cups; and (iii) as pressed‐powder pellets. Data derived using these methods were compared with data obtained from a standard benchtop X‐ray fluorescence (XRF) unit. Generally, the results indicated that data from pressed powder pellets often provide the best correlation to benchtop XRF data, although the results were sometimes element or compound specific. Calcium oxide, Fe2O3, and K2O generally provided the strongest correlations between pXRF‐ and XRF‐reported values; SiO2 data were more problematic. Field‐moist pXRF scans generally underestimated element concentrations, but the correlations between pXRF and benchtop XRF measurements were greatly improved after applying pXRF‐derived calibration standards. In summary, although element/compound data provided by pXRF showed significant relationships to benchtop XRF data, the results are improved with proper sample preparation (i.e., drying, grinding, pressing) and usually by calibrating the pXRF data against known standards.
Hydration and metasomatism of the lithospheric mantle potentially influences both the magmatic and tectonic evolution of southwestern North America. Prior studies have suggested that volatile enrichments to the mantle underlying western North America resulted from shallow subduction of the Farallon Plate during the Laramide . This study examines temporal and spatial variations in volatile elements (H 2 O, Cl, F, and S) determined from olivine and orthopyroxene-hosted melt inclusions along and across the Rio Grande Rift, the easternmost extent of Laramide shallow subduction. Maximum chlorine enrichments are observed in the southern rift with a Cl/Nb of $210 and reduce with time to MORB-OIB levels ($5-17). Measured water abundances are <0.8 wt % in rehomogenized inclusions; however, calculated H 2 O, based on Cl/Nb systematics, primarily varies from 0.5 to 2 wt % H 2 O. Sulfur abundances (<0.61 wt %), and calculated sulfide saturation, indicate magmas with high Cl/Nb also contain oxidized sulfur. The abundance of fluorine in melt inclusions (up to 0.2 wt %) is not correlated to other volatile elements. Temporal variations in melt inclusion volatile abundances coupled with varying isotopic (Sr-Nd-Pb) whole-rock systematics suggest a transition from lithospheric to asthenospheric melt generation in the southern RGR and potential lithosphere-asthenosphere melt mixing in the central RGR. East to west decrease in volatile enrichment likely reflects a combination of varying mantle sources and early removal of metasomatized lithospheric mantle underlying regional extension. Results indicate, from multiple causes, subduction-related volatile enrichment to the lithospheric mantle is ephemeral, and strong enrichments in volatiles are not preserved in active magmatic-tectonic provenances.
The deep submergence research vehicle Shinkai 6500, diving on the Challenger segment of the Mariana forearc, encountered a superstructure of nascent arc crust atop a younger mantle with entrained fragments of metamorphosed crust. A plutonic block from this crust collected at 4900 m depth has a crystallization age of 46.1 Ma and mixed boninitic-arc tholeiitic geochemical signatures. A hornblende garnetite and two epidote amphibolites were retrieved from depths between 5938 m and 6277 m in an area dominated by peridotite. The garnetite appears to represent a crystal cumulate after melting of deep arc crust, whereas the amphibolites are compositionally similar to enriched mid-ocean ridge basalt (MORB). The initial isotopic compositions of these crustal fragments are akin to those of Eocene to Cretaceous terranes along the periphery of the Philippine plate. The garnetite achieved pressures of 1.2 GPa or higher and temperatures above 850 °C and thus could represent a fragment of the delaminated root of one of these terranes. This sample has coeval Sm-Nd, Lu-Hf, and 40 Ar-39 Ar ages indicating rapid ascent and cooling at 25 Ma, perhaps in association with rifting of the Kyushu-Palau arc. Peak P-T conditions were lower for the amphibolites, and their presence on the ocean floor near the garnetite might have resulted from mass wasting or normal faulting. The presence of relatively fusible crustal blocks in the circulating mantle could have contributed to the isotopic similarity of Mariana arc and backarc lavas with Indian Ocean MORB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.