Felsic magmas from the Izu‐Bonin rear arc have compositions that resemble average continental crust in some respects. In order to understand their origin, we studied 1.1–4.4 Ma tephras in a rear‐arc drill core from International Ocean Discovery Program Expedition 350, Site U1437. They provide a well‐dated record of changing magmatic compositions during the early stages of the most recent episode of Izu‐Bonin arc rifting. Based on our comprehensive recontextualization of published analyses of <7 Ma regional dredged rocks across the arc, basalts to rhyolites are shown to vary in coherent chronological and spatial trends and can be classified into three series: light rare earth element‐depleted volcanic front series; a rift‐related series with nearly flat rare earth element patterns; and light rare earth element‐enriched rear‐arc seamount chain‐type (RASC‐type) series, which are abundant in the studied Site U1437 tephra record. All three series erupted simultaneously between 4.4 and 1.1 Ma, including the RASC‐type rhyolites which erupted until 1.1 Ma in significant quantities. Remarkably, trace element and radiogenic isotope ratios are similar between rhyolites and basalts from the same region. This recontextualization of rhyolite affinity represents a significant departure from existing frameworks. Geochemical modeling shows that fractional crystallization can largely explain <4.4 Ma RASC‐type rhyolites with some additional open system processing evident in rhyolites with >73% SiO2. However, trace element and Hf isotope ratios preclude rear‐arc rhyolite derivation by partial melting of the Oligocene‐Eocene arc basement. Thus, we favor a model where fractional crystallization is more important than crustal melting in producing intra‐oceanic arc rhyolites in this region.
The deep submergence research vehicle Shinkai 6500, diving on the Challenger segment of the Mariana forearc, encountered a superstructure of nascent arc crust atop a younger mantle with entrained fragments of metamorphosed crust. A plutonic block from this crust collected at 4900 m depth has a crystallization age of 46.1 Ma and mixed boninitic-arc tholeiitic geochemical signatures. A hornblende garnetite and two epidote amphibolites were retrieved from depths between 5938 m and 6277 m in an area dominated by peridotite. The garnetite appears to represent a crystal cumulate after melting of deep arc crust, whereas the amphibolites are compositionally similar to enriched mid-ocean ridge basalt (MORB). The initial isotopic compositions of these crustal fragments are akin to those of Eocene to Cretaceous terranes along the periphery of the Philippine plate. The garnetite achieved pressures of 1.2 GPa or higher and temperatures above 850 °C and thus could represent a fragment of the delaminated root of one of these terranes. This sample has coeval Sm-Nd, Lu-Hf, and 40 Ar-39 Ar ages indicating rapid ascent and cooling at 25 Ma, perhaps in association with rifting of the Kyushu-Palau arc. Peak P-T conditions were lower for the amphibolites, and their presence on the ocean floor near the garnetite might have resulted from mass wasting or normal faulting. The presence of relatively fusible crustal blocks in the circulating mantle could have contributed to the isotopic similarity of Mariana arc and backarc lavas with Indian Ocean MORB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.