A fluorescence-based technique was established to trace intracellular sporozoites of Eimeria bovis for tests on gliding motility, invasion, replication and quantification of infection rates in cultured bovine umbilical vein endothelial cells (BUVEC) by laser scanning confocal microscopy and flow cytometry (FCM) analyses. Employing the fluorescent dye 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), we determined its effects on sporozoites at various concentrations and duration of staining. More than 98% of sporozoites were labelled with the dye at a concentration of 2.5 muM. Staining was predominantly found in refractile bodies and presumptive micronemes. Upon infection of BUVEC, CFSE-labelled sporozoites developed into fluorescent immature macromeronts, which were traceable inside the cells until 22 days postinfection (p. i.). Consistent with a peripheral localisation of the fluorescence signal in macromeronts merozoites released from these lacked detectable fluorescence. As example of use, a multicolour FCM approach for the simultaneous determination of E. bovis infection and host cell surface molecule expression was established. The approach proved suitable to quantify major histocompatibility complex (MHC-I) and MHC-II expression, thereby clearly distinguishing between infected and uninfected BUVEC up to day 14 p. i. In conclusion, CFSE labelling of E. bovis sporozoites facilitates monitoring of intracellular stages in vitro and will be a highly useful tool for studying host cell responses towards parasite invasion.
Host immune responses conducted against antigens of Eimeria bovis are key factors for the development of protective immunity against this protozoan disease. In this study we investigated the expression of E. bovis-derived antigens on the host cell surface membrane during E. bovis first merogony in vitro. Host cells carrying E. bovis-meront I stages expressed E. bovis host cell surface antigens (EbHCSAg) on their surface membrane which were recognised by hyperimmune sera of calves and by sera from rats immunized with E. bovis merozoites I, when tested by indirect immune fluorescent antibody test (IIFAT), laser scanning confocal microscopy (LSCM) and immune electron microscopy. Expression of EbHCSAg on permissive host cells was earliest detected 7 days p. i., thus coinciding with the onset of the parasite replication. Membrane-associated EbHCSAg were removed from infected host cells by proteinase K, partially by Triton X-100, Triton X-114 and Triton X-405, but not by 1 M NaCl, CHAPS or phospholipase C treatment. Antibodies, affinity-purified on paraformaldehyde/glutardialdehyde (PAGA)-fixed E. bovis meront I-infected bovine host cells bound to the surface meront I-carrying cells and to merozoites I (IIFAT, LSCM) but, in contrast to untreated sera, not to sporozoites. When tested on methanol-fixed merozoites I and sporozoites by IIFAT, affinity-purified antibodies bound to structures in the apical complex area of merozoites I, but not to sporozoites, whilst untreated sera caused diffuse labelling of internal structures of both parasite stages. Immune electron microscopy demonstrated binding of affinity-purified antibodies to micronemes and dense granules of merozoites I. Although the function of EbHCSAg is still unknown, results of this study might suggest an involvement in the development of protective immunity against E. bovis infections.
The photosensitive microvilli of Drosophila photoreceptors R1-R6 are not aligned in parallel over the entire length of the visual cells. In the distal half of each cell, the microvilli are slightly tilted toward one side and, in the proximal half, extremely toward the opposite side. This phenomenon, termed rhabdomere twisting, has been known for several decades, but the developmental and cell biological basis of rhabdomere twisting has not been studied so far. We show that rhabdomere twisting is also manifested as molecular polarization of the visual cell, because phosphotyrosine-containing proteins are selectively partitioned to different sides of the rhabdomere stalk in the distal and proximal sections of each R1-R6 photoreceptor. Both the asymmetrical segregation of phosphotyrosine proteins and the tilting of the microvilli occur shortly before eclosion of the flies, when eye development in all other aspects is considered to be essentially complete. Establishment of rhabdomere twisting occurs in a light-independent manner, because phosphotyrosine staining is unchanged in dark-reared wild-type flies and in mutants with defects in the phototransduction cascade, ninaE 17 and norpA P24 . We conclude that antiphosphotyrosine immunofluorescence can be used as a light microscopic probe for the analysis of rhabdomere twisting and that microvilli tilting represents a type of planar cell polarity that is established by an active process in the last phase of photoreceptor morphogenesis, just prior to eclosion of the flies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.