Rodents play a significant role in enzootic cycles of tick-borne pathogens, notably, in the northern hemisphere, tick-borne encephalitis virus and Lyme borreliosis spirochaetes. The relative numbers of nymphal and larval ticks feeding on rodents are crucial variables in determining the probability of rodent infection and the degree of amplification of infection prevalence in the tick population. Manipulation of the microclimate within quasinatural experimental arenas revealed that under increasingly dry conditions the numbers of unfed nymphal Ixodes ricinus L. questing in upper layers of the herbage decreased, whereas the rate of fat use and the numbers of nymphs feeding on small rodents, both increased. This is consistent with nymphs descending to the moist lower vegetation layers for water replenishment, where they would come into contact with small hosts. Very few larvae quested or fed on rodents under the dry conditions, but many more did so once the humidity increased, suggesting that larvae escape desiccation by becoming quiescent. The ratio of larvae to nymphs feeding on rodents thus increases with increasing humidity, contributing to the seasonal and geographical variation in disease transmission dynamics.
Life-threatening gastrointestinal (GI) diseases of prematurity are highly associated with systemic candidiasis. This implicates the premature GI tract as an important site for invasion by Candida. Invasive interactions of Candida spp. with immature enterocytes have heretofore not been analyzed. Using a primary immature human enterocyte line, we compared the ability of multiple isolates of different Candida spp. to penetrate, injure, and induce a cytokine response from host cells. Of all the Candida spp. analyzed, C. albicans had the greatest ability to penetrate and injure immature enterocytes and to elicit IL-8 release (p Ͻ 0.01). In addition, C. albicans was the only Candida spp. to form filamentous hyphae when in contact with immature enterocytes. Similarly, a C. albicans mutant with defective hyphal morphogenesis and invasiveness had attenuated cytotoxicity for immature enterocytes (p Ͻ 0.003). Thus, hyphal morphogenesis correlates with immature enterocyte penetration, injury, and inflammatory responses. Furthermore, variability in enterocyte injury was observed among hyphal-producing C. albicans strains, suggesting that individual organism genotypes also influence host-pathogen interactions. Overall, the finding that Candida spp. differed in their interactions with immature enterocytes implicates that individual spp. may use different pathogenesis mechanisms. (Pediatr Res 69: 384-389, 2011)
We use topological data analysis and machine learning to study a seminal model of collective motion in biology [D'Orsogna et al., Phys. Rev. Lett. 96 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collective motion in a large library of numerical simulations and to recover model parameters from the simulation data, we apply machine learning techniques to two different types of input. First, we input time series of order parameters traditionally used in studies of collective motion. Second, we input measures based in topology that summarize the time-varying persistent homology of simulation data over multiple scales. This topological approach does not require prior knowledge of the expected patterns. For both unsupervised and supervised machine learning methods, the topological approach outperforms the traditional one.
The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.