SUMMARY Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
SummaryTonB couples the cytoplasmic membrane protonmotive force (pmf) to active transport across the outer membrane, potentially through a series of conformational changes. Previous studies of a TonB transmembrane domain mutant (TonB-⌬V17) and its phenotypical suppressor (ExbB-A39E) suggested that TonB is conformationally sensitive. Here, two new mutations of the conserved TonB transmembrane domain SHLS motif were isolated, TonB-S16L and -H20Y, as were two new suppressors, ExbB-V35E and -V36D. Each suppressor ExbB restored at least partial function to the TonB mutants, although TonB-⌬V17, for which both the conserved motif and the register of the predicted transmembrane domain ␣-helix are affected, was the most refractory. As demonstrated previously, TonB can undergo at least one conformational change, provided both ExbB and a functional TonB transmembrane domain are present. Here, we show that this conformational change reflects the ability of TonB to respond to the cytoplasmic membrane proton gradient, and occurs in proportion to the level of TonB activity attained by mutant-suppressor pairs. The phenotype of TonB-⌬V17 was more complex than the -S16L and -H20Y mutations, in that, beyond the inability to be energized efficiently, it was also conditionally unstable. This second defect was evident only after suppression by the ExbB mutants, which allow transmembrane domain mutants to be energized, and presented as the rapid turnover of TonB-⌬V17. Importantly, this degradation was dependent upon the presence of a TonB-dependent ligand, suggesting that TonB conformation also changes following the energy transduction event. Together, these observations support a dynamic model of energy transduction in which TonB cycles through a set of conformations that differ in potential energy, with a transition to a higher energy state driven by pmf and a transition to a lower energy state accompanying release of stored potential energy to an outer membrane receptor.
SummaryThe TonB system of Gram-negative bacteria appears to exist for the purpose of transducing the protonmotive force energy from the cytoplasmic membrane, where it is generated, to the outer membrane, where it is needed for active transport of iron siderophores, vitamin B12 and, in pathogens, iron from host-binding proteins. In this review, we bring the reader up to date on the developments in the field since the authors each wrote reviews in this journal in 1990.
SummaryThe energy source for active transport of iron-siderophore complexes and vitamin B12 across the outer membrane in Gram-negative bacteria is the cytoplasmic membrane proton-motive force (pmf). TonB protein is required in this process to transduce cytoplasmic membrane energy to the outer membrane. In this study, Escherichia coli TonB was found to be distributed in sucrose density gradients approximately equally between the cytoplasmic membrane and the outer membrane fractions, while two proteins with which it is known to interact, ExbB and ExbD, as well as the NADH oxidase activity characteristic of the cytoplasmic membrane, were localized in the cytoplasmic membrane fraction. Neither the N-terminus of TonB nor the cytoplasmic membrane pmf, both of which are essential for TonB activity, were required for TonB to associate with the outer membrane. When the TonB C-terminus was absent, TonB was found associated with the cytoplasmic membrane, suggesting that the C-terminus was required for outer membrane association. When ExbB and ExbD, as well as their cross-talk-competent homologues TolQ and TolR, were absent, TonB was found associated with the outer membrane. TetA-TonB protein, which cannot interact with ExbB/D, was likewise found associated with the outer membrane. These results indicated that the role of ExbB/D in energy transduction is to bring TonB that has reached the outer membrane back to associate with the cytoplasmic membrane. Two possible explanations exist for the observations presented in this study. One possibility is that TonB transduces energy by shuttling between membranes, and, at some stages in the energy-transduction cycle, is associated with either the cytoplasmic membrane or the outer membrane, but not with both at the same time. This hypothesis, together with the alternative interpretation that TonB remains localized in the cytoplasmic membrane and changes its affinity for the outer and cytoplasmic membrane during energy transduction, are incorporated with previous observations into two new models, consistent with the novel aspects of this system, that describe a mechanism for TonB-dependent energy transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.