Self-healing polymers composed of microencapsulated healing agents exhibit remarkable mechanical performance and regenerative ability, but are limited to autonomic repair of a single damage event in a given location. Self-healing is triggered by crack-induced rupture of the embedded capsules; thus, once a localized region is depleted of healing agent, further repair is precluded. Re-mendable polymers can achieve multiple healing cycles, but require external intervention in the form of heat treatment and applied pressure. Here, we report a self-healing system capable of autonomously repairing repeated damage events. Our bio-inspired coating-substrate design delivers healing agent to cracks in a polymer coating via a three-dimensional microvascular network embedded in the substrate. Crack damage in the epoxy coating is healed repeatedly. This approach opens new avenues for continuous delivery of healing agents for self-repair as well as other active species for additional functionality.
Multiple healing cycles of a single crack in a brittle polymer coating are achieved by microvascular delivery of a two‐part, epoxy‐based self‐healing chemistry. Epoxy resin and amine‐based curing agents are transported to the crack plane through two sets of independent vascular networks embedded within a ductile polymer substrate beneath the coating. The two reactive components remain isolated and stable in the vascular networks until crack formation occurs in the coating under a mechanical load. Both healing components are wicked by capillary forces into the crack plane, where they react and effectively bond the crack faces closed. Healing efficiencies of over 60% are achieved for up to 16 intermittent healing cycles of a single crack, which represents a significant improvement over systems in which a single monomeric healing agent is delivered.
A protocol is described to assess self-healing of crack damage in a polymer coating deposited on a substrate containing a microvascular network. The bio-inspired coating/substrate design delivers healing agent to cracks in the coating via a three-dimensional microvascular network embedded in the substrate. Through capillary action, monomer flows from the network channels into the crack plane where it is polymerized by a catalyst embedded in the coating. The healing efficiency of this materials system is assessed by the recovery of coating fracture toughness in a four-point beam bending experiment. Healing results for the microvascular networks are compared to data for a coating containing microencapsulated healing agents. A single crack in a brittle epoxy coating is healed as many as seven times in the microvascular systems, whereas microcapsule-based healing occurs for only one cycle. The ability to heal continuously with the microvascular networks is limited by the availability of catalyst in the coating.
Acoustomotive optical coherence elastography (AM-OCE), a dynamic and internal excitation optical coherence elastography (OCE) technique, is reported. Acoustic radiation force was used for internal mechanical excitation and spectral-domain optical coherence tomography (OCT) was used for detection. Mechanical properties of gelatin tissue phantoms were measured by AM-OCE and verified using rheometry results. Measured mechanical properties including shear moduli and shear damping parameters of the gelatin samples double when their polymer concentration increases from 3% to 4%. Spectral analysis was also performed on the acquired data, which improved the processing speed by a factor of five compared to a least square fitting approach. Quantitative measurement, micro-scale resolution, and remote excitation are the main features of AM-OCE, which make the technique promising for measuring biomechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.