Estimates of
Plasmodium falciparum
migration may inform strategies for malaria elimination. Here we elucidate fine-scale parasite population structure and infer recent migration across Southeast Asia using identity-by-descent (IBD) approaches based on genome-wide single nucleotide polymorphisms called in 1722 samples from 54 districts. IBD estimates are consistent with isolation-by-distance. We observe greater sharing of larger IBD segments between artemisinin-resistant parasites versus sensitive parasites, which is consistent with the recent spread of drug resistance. Our IBD analyses reveal actionable patterns, including isolated parasite populations, which may be prioritized for malaria elimination, as well as asymmetrical migration identifying potential sources and sinks of migrating parasites.
Until recently, air quality impacts from wildfires were predominantly determined based on data from permanent stationary regulatory air pollution monitors. However, low-cost particulate matter (PM) sensors are now widely used by the public as a source of air quality information during wildfires, although their performance during smoke impacted conditions has not been thoroughly evaluated. We collocated three types of low-cost fine PM (PM2.5) sensors with reference instruments near multiple fires in the western and eastern United States (maximum hourly PM2.5 = 295 µg/m3). Sensors were moderately to strongly correlated with reference instruments (hourly averaged r2 = 0.52–0.95), but overpredicted PM2.5 concentrations (normalized root mean square errors, NRMSE = 80–167%). We developed a correction equation for wildfire smoke that reduced the NRMSE to less than 27%. Correction equations were specific to each sensor package, demonstrating the impact of the physical configuration and the algorithm used to translate the size and count information into PM2.5 concentrations. These results suggest the low-cost sensors can fill in the large spatial gaps in monitoring networks near wildfires with mean absolute errors of less than 10 µg/m3 in the hourly PM2.5 concentrations when using a sensor-specific smoke correction equation.
Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020. We analyzed UMD-CTIS survey data through December 20, 2020, from 31,142,582 responses representing 114 countries/territories weighted for nonresponse and adjusted to basic demographics. We show consistent respondent demographics over time for many countries/territories. Machine Learning models trained on national and pooled global data verified known symptom indicators. COVID-like illness (CLI) signals were correlated with government benchmark data. Importantly, the best benchmarked UMD-CTIS signal uses a single survey item whereby respondents report on CLI in their local community. In regions with strained health infrastructure but active social media users, we show it is possible to define COVID-19 impact trajectories using a remote platform independent of local government resources. This syndromic surveillance public health tool is the largest global health survey to date and, with brief participant engagement, can provide meaningful, timely insights into the global COVID-19 pandemic at a local scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.