Risk communication is a significant challenge in risk management. It serves different purposes; an important one is to improve the public risk awareness and mitigation. Because of the strong spatio-temporal component of natural hazards, maps can play a decisive role in communicating risk information. The application and design of maps for risk communication especially to the public has not been investigated comprehensively. Specific constraints and challenges of risk communication have not been considered systematically in the map design process so far. This study aims at developing a frame for the application and design of interactive risk and hazard maps for the public which is based on the specific constraints and challenges of risk communication. In a literature review it introduces concepts and methods from social sciences and psychology, which have been assessed as important for communicating risk information. The concepts and methods are adapted to map-mediated risk communication according to the approaches of Activity Theory. Communication objectives and tasks which are essential to improve risk mitigation are identified and geovisualization methods for information presentation are related according to the degree which they are able to serve them. Based on this, some principles for map-based risk communication are established.
An efficient method to investigate which morphological changes have greatest impact on the water quality is to carry out a computer modelling exercise. In this study, three models, a hydrodynamic (DYNHYD), a eutrophication model (EUTRO), and a sediment and micro-pollutant transport model (TOXI), were coupled together in the High Level Architecture (HLA) platform. DYNHYD dynamically simulates the propagation of a wave through a river reach one-dimensionally by solving the full dynamic wave equation. Important parameters that describe the river morphology are the roughness coefficient and the weir discharge coefficient. EUTRO simulates the phytoplankton-nutrient dynamics in water bodies with variables and parameters that regulate the process in this cycle. Examples of some of the more important parameters are the oxygen reaeration, phytoplankton growth or nitrification rates. TOXI was implemented to simulate the transport of sediments and heavy metals in which the most important transformation process of the metals was sorption. It is the aim of this study to see the effect that hydrodynamic parameters such as weir discharge and roughness coefficients have on water quality constituents, such as chlorophyll-a, dissolved oxygen and levels of ammonium and dissolved zinc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.