Since modern foods are unnaturally enriched in single metabolites, it is important to understand which metabolites are sensed by the human body and which are not. We previously showed that the fatty acid stearic acid (C18:0) signals via a dedicated pathway to regulate mitofusin activity and thereby mitochondrial morphology and function in cell culture. Whether this pathway is poised to sense changes in dietary intake of C18:0 in humans is not known. We show here that C18:0 ingestion rapidly and robustly causes mitochondrial fusion in people within 3 h after ingestion. C18:0 intake also causes a drop in circulating long-chain acylcarnitines, suggesting increased fatty acid beta-oxidation in vivo. This work thereby identifies C18:0 as a dietary metabolite that is sensed by our bodies to control our mitochondria. This could explain part of the epidemiological differences between C16:0 and C18:0, whereby C16:0 increases cardiovascular and cancer risk whereas C18:0 decreases both.
Background and purpose Trimethylamine‐N‐oxide (TMAO) is a biomarker of the gut microbiome and correlates with the risk of cardiovascular diseases. However, conflicting data exist on the specific role of TMAO in ischaemic stroke patients. We aimed to analyze the time course of TMAO levels in stroke patients compared with controls. Methods In this prospective, case‐control study, patients suffering from ischaemic stroke (onset <24 h) and control patients with less than two cardiovascular risk factors were enrolled. Plasma TMAO levels were analyzed on admission, after 48 h and after 3 months. The primary endpoint was the difference in TMAO levels on admission between stroke patients and controls. Results A total of 196 patients with ischaemic stroke and 100 controls were included between February 2018 and April 2019. Plasma TMAO levels on admission were significantly higher in stroke patients than in controls [median value 4.09 (2.87–6.49) vs. 3.16 (2.08–5.16) µmol/L, P = 0.001]. There was a significant decrease in TMAO levels in stroke patients after 48 h [median at 48 h, 3.49 (2.30–5.39) µmol/L, P = 0.027]. TMAO levels increased again 3 months after stroke [median 4.23 (2.92–8.13) µmol/L, P = 0.047]. In controls, TMAO levels did not change between admission and after 48 h [median at 48 h, 3.14 (1.63–4.61) µmol/L, P = 0.11]. An inverse correlation between TMAO values and kidney function was found (Spearman rho −0.334, P < 0.001). Conclusions Our study emphasizes the importance of the time course of TMAO levels after ischaemic stroke. Future studies should define the time point of TMAO analysis, preferably in the acute phase (<24 h).
ACBD5 deficiency is a novel peroxisome disorder with a largely uncharacterized pathology. ACBD5 was recently identified in a tethering complex mediating membrane contacts between peroxisomes and the endoplasmic reticulum (ER). An ACBD5-deficient mouse was analyzed to correlate ACBD5 tethering functions with the disease phenotype. ACBD5-deficient mice exhibit elevated very long-chain fatty acid levels and a progressive cerebellar pathology. Liver did not exhibit pathologic changes but increased peroxisome abundance and drastically reduced peroxisome-ER contacts. Lipidomics of liver and cerebellum revealed tissue-specific alterations in distinct lipid classes and subspecies. In line with the neurological pathology, unusual ultra-long chain fatty acids (C > 32) were elevated in phosphocholines from cerebelli but not liver indicating an organ-specific imbalance in fatty acid degradation and elongation pathways. By contrast, ether lipid formation was perturbed in liver towards an accumulation of alkyldiacylglycerols. The alterations in several lipid classes suggest that ACBD5, in addition to its acyl-CoA binding function, might maintain peroxisome-ER contacts in order to contribute to the regulation of anabolic and catabolic cellular lipid pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.