HIGHLIGHTS: Sedimentation of fine sediment particles onto seagrass leaves severely hampers the plants' performance in both light and darkness, due to inadequate internal plant aeration and intrusion of phytotoxic H2S.Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O2 fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without fine sediment particles, and combined these laboratory measurements with in situ microsensor measurements of tissue O2 and H2S concentrations. Net photosynthesis rates in leaves with fine sediment particles were down to ~20% of controls without particles, and the compensation photon irradiance increased from a span of 20–53 to 109–145 μmol photons m−2 s−1. An ~2.5-fold thicker DBL around leaves with fine sediment particles impeded O2 influx into the leaves during darkness. In situ leaf meristematic O2 concentrations of plants exposed to fine sediment particles were lower than in control plants and exhibited long time periods of complete meristematic anoxia during night-time. Insufficient internal aeration resulted in H2S intrusion into the leaf meristematic tissues when exposed to sediment resuspension even at relatively high night-time water-column O2 concentrations. Fine sediment particles that settle on seagrass leaves thus negatively affect internal tissue aeration and thereby the plants' resilience against H2S intrusion.
The traditional perception in limnology has been that phytoplankton biomass in lakes is limited by phosphorus, nitrogen, and light, but not by dissolved inorganic carbon (DIC) because CO2 can be supplied from the atmosphere. We tested the possibility of carbon limitation of photosynthesis, growth, and biomass accumulation of phytoplankton communities across an alkalinity and DIC gradient (0.15–3.26 mM) in nutrient‐rich freshwater. During 47‐day long experiments, we measured phytoplankton biomass, organic carbon, calcium, DIC, pH, and oxygen in indoor, constantly mixed mesocosms with either no removal or a 70% weekly removal of the biomass. Photosynthesis was measured in the morning and in the afternoon at high biomass. Maximum biomass and organic carbon production increased two‐ to four‐fold with DIC, which supported 7% of organic carbon production at low DIC and 53% at high DIC concentration, while atmospheric CO2 uptake supplied the remainder. Weekly biomass removal increased growth rates through improved light conditions leading to enhanced total phytoplankton biomass production at high DIC. Photosynthesis was significantly higher in the morning compared to afternoon due to daily DIC depletion. We conclude that phytoplankton photosynthesis, growth rate, maximum biomass, and organic carbon production can be markedly carbon limited in eutrophic lake waters. Consequently, lakes of high DIC and pH can support a faster primary production by greater DIC use and chemically enhanced atmospheric CO2 uptake.
Dense moss cushions of different size are distributed across the bare limestone pavements on Øland, SE Sweden. Increasing cushion size is predicted to physically protect and improve performance and colonization by vascular plants. Therefore, we tested water balance, phosphorus supply, and species richness, and evaluated duration of plant activity during desiccation as a function of ground area, for a large collection of moss cushions. We found that lower evaporation and higher water storage contributed equally to extending the desiccation period with increasing cushion size. Evaporation rates declined by the -0.36 power of cushion diameter, and were not significantly different from -0.50 for the square root function previously predicted for the increasing thickness of the boundary layer, with greater linear dimensions for smooth flat objects at low wind velocities. Size dependence vanished under stagnant conditions. One moss species was added to the species pool for every nine-fold increase in cushion area. Vascular plants were absent from the smallest cushions, whereas one or two species, on average, appeared in 375- and 8,500-cm(2) cushions with water available for 6 and 10 days during desiccation. Phosphorus concentrations increased stepwise and four-fold from detritus to surface mosses and to vascular plants, and all three pools increased with cushion size. We conclude that cushion mosses and cushion size play a critical role in this resource-limited limestone environment by offering an oasis of improved water and nutrient supply to colonization and growth of plants.
Dense moss cushions colonize bare limestone pavements on Öland’s alvar, southeastern Sweden. As these cushions grow larger and thicker and can store more water, they should physically protect and facilitate their own performance as well as the colonization by vascular plants. We tested these predictions by measuring the airflow and water economy of moss cushions. We found that cushions are imbedded in boundary layers formed by ground and moss surfaces. Near-surface flow was reduced immediately upwind and negligible downwind of the moss cushions, which should facilitate their centrifugal expansion. The calculated diffusion boundary layer was thin (<0.7 mm) above moss cushions exposed to free airflow of 1–6 m·s−1 in accordance with substantial turbulence measured by small sensors at 0.5 cm distance from moss surfaces. Evaporation from the wetted cushions increased linearly with wind speed (0 and 8 m·s−1) in wind-tunnel experiments, and neither evaporation nor airflow followed standard formulas for objects in free flow. Higher wind speed reduced the diffusion boundary layer and simultaneously cooled the moss surface, thereby reducing the drop in water vapour concentration from moss surfaces to air. As desiccation of cushions progressed during three dry summer days, the profound decline of evaporation rate with cushion size gradually became positive when only large cushions still contained water. Water economy in relation to cushion size predicted that rehydrated large cushions retained photosynthesis for 80% and small cushions for only 50% of the time. A cover of the succulent plant Sedum album L. reduced sun and wind exposure and water loss from the moss surface. Sedum remained hydrated after mosses had dried out. Moss cushions and Sedum can, therefore, mutually benefit from each other’s water economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.