Renal cell carcinoma with TFE3 rearrangement at Xp11.2 is a distinct subtype manifesting an indolent clinical course in children, with recent reports suggesting a more aggressive entity in adults. This subtype is morphologically heterogeneous and can be misclassified as clear cell or papillary renal cell carcinoma. TFE3 is also rearranged in alveolar soft part sarcoma. To aid in diagnosis, a break-apart strategy fluorescence in situ hybridization (FISH) probe set specific for TFE3 rearrangement and a reflex dual-color, single-fusion strategy probe set involving the most common TFE3 partner gene, ASPSCR1, were validated on formalin-fixed, paraffinembedded tissues from nine alveolar soft part sarcoma, two suspected Xp11.2 renal cell carcinoma, and nine tumors in the differential diagnosis. The impact of tissue cut artifact was reduced through inclusion of a chromosome X centromere control probe. Analysis of the UOK-109 renal carcinoma cell line confirmed the break-apart TFE3 probe set can distinguish the subtle TFE3/NONO fusion-associated inversion of chromosome X. Subsequent extensive clinical experience was gained through analysis of 75 cases with an indication of Xp11.2 renal cell carcinoma (n ¼ 54), alveolar soft part sarcoma (n ¼ 13), perivascular epithelioid cell neoplasms (n ¼ 2), chordoma (n ¼ 1), or unspecified (n ¼ 5). We observed balanced and unbalanced chromosome X;17 translocations in both Xp11.2 renal cell carcinoma and alveolar soft part sarcoma, supporting a preference but not a necessity for the translocation to be balanced in the carcinoma and unbalanced in the sarcoma. We further demonstrate the unbalanced separation is atypical, with TFE3/ASPSCR1 fusion and loss of the derivative X chromosome but also an unanticipated normal X chromosome gain in both males and females. Other diverse sex chromosome copy number combinations were observed. Our TFE3 FISH assay is a useful adjunct to morphologic analysis of such challenging cases and will be applicable to assess the growing spectrum of TFE3-rearranged tumors.
Multiple myeloma (MM) is two- to three-fold more common in African Americans (AAs) compared to European Americans (EAs). This striking disparity, one of the highest of any cancer, may be due to underlying genetic predisposition between these groups. There are multiple unique cytogenetic subtypes of MM, and it is likely that the disparity is associated with only certain subtypes. Previous efforts to understand this disparity have relied on self-reported race rather than genetic ancestry, which may result in bias. To mitigate these difficulties, we studied 881 patients with monoclonal gammopathies who had undergone uniform testing to identify primary cytogenetic abnormalities. DNA from bone marrow samples was genotyped on the Precision Medicine Research Array and biogeographical ancestry was quantitatively assessed using the Geographic Population Structure Origins tool. The probability of having one of three specific subtypes, namely t(11;14), t(14;16), or t(14;20) was significantly higher in the 120 individuals with highest African ancestry (≥80%) compared with the 235 individuals with lowest African ancestry (<0.1%) (51% vs. 33%, respectively, p value = 0.008). Using quantitatively measured African ancestry, we demonstrate a major proportion of the racial disparity in MM is driven by disparity in the occurrence of the t(11;14), t(14;16), and t(14;20) types of MM.
Objective: Acute myeloid leukemia (AML) can be subtyped based on recurrent cytogenetic and molecular genetic abnormalities with diagnostic and prognostic significance. Although cytogenetic characterization classically involves conventional chromosome and/or fluorescence in situ hybridization (FISH) assays, limitations of these techniques include poor resolution and the inability to precisely identify breakpoints. Method:We evaluated whether an NGS-based methodology that detects structural abnormalities and copy number changes using mate pair sequencing (MPseq) can enhance the diagnostic yield for patients with AML.Results: Using 68 known abnormal and 20 karyotypically normal AML samples, each recurrent primary AML-specific abnormality previously identified in the abnormal samples was confirmed using MPseq. Importantly, in eight cases with abnormalities that could not be resolved by conventional cytogenetic studies, MPseq was utilized to molecularly define eight recurrent AML-fusion events. In addition, MPseq uncovered two cryptic abnormalities that were missed by conventional cytogenetic studies. Thus, MPseq improved the diagnostic yield in the detection of AML-specific structural rearrangements in 10/88 (11%) of cases analyzed. Conclusion:Utilization of MPseq represents a precise, molecular-based technique that can be used as an alternative to conventional cytogenetic studies for newly diagnosed AML patients with the potential to revolutionize the diagnosis of hematologic malignancies. K E Y W O R D Sacute myeloid leukemia, molecular cytogenetics, MPseq
Renal cell carcinoma (RCC) with chromosomal rearrangement of transcription factor for immunoglobulin heavy-chain enhancer 3 (TFE3) at Xp11.2 is a distinct subtype that was initially described in children and has been reported to display an indolent course. Recent reports have identified RCC with TFE3 rearrangements in adults and have suggested a more aggressive course in this population. However, only a few studies have examined these tumors in a large series of consecutively treated adults. We screened 632 RCCs from patients consecutively treated by surgery at a single institution by fluorescence in situ hybridization to detect TFE3 rearrangements. We identified 6 RCCs with TFE3 rearrangement. Patient ages ranged from 25 to 78 years and included 4 women and 2 men. Tumors showed significant histologic variability. Comparison of the clinical and pathologic features between RCCs with TFE3 rearrangements and RCCs without TFE3 rearrangements showed no significant differences. Follow-up period for patients with TFE3-rearranged RCC ranged from 0.8 to 16.5 years, with 4 of 6 dying from the disease. Cancer-specific survival for patients with TFE3-rearranged RCC was significantly worse than for patients with TFE3-rearrangement-negative papillary-type RCC (P<0.001) but not different from that for TFE3-rearrangement-negative clear cell-type RCC. In conclusion, we present an assessment of TFE3 rearrangement status in a large series of adults consecutively treated by surgery for RCC. Our findings confirm that RCCs with TFE3 rearrangement account for only approximately 1% of adult RCCs. The results also suggest that adult RCC with TFE3 rearrangement may be a clinically aggressive tumor.
Fluorescence in situ hybridization (FISH) is currently the gold-standard assay to detect recurrent genomic abnormalities of prognostic significance in multiple myeloma (MM). Since most translocations in MM involve a position effect with heterogeneous breakpoints, we hypothesize that FISH has the potential to miss translocations involving these regions. We evaluated 70 bone marrow samples from patients with plasma cell dyscrasia by FISH and whole-genome mate-pair sequencing (MPseq). Thirty cases (42.9%) displayed at least one instance of discordance between FISH and MPseq for each primary and secondary abnormality evaluated. Nine cases had abnormalities detected by FISH that went undetected by MPseq including 6 tetraploid clones and three cases with missed copy number abnormalities. In contrast, 19 cases had abnormalities detected by MPseq that went undetected by FISH. Seventeen were MYC rearrangements and two were 17p deletions. MPseq identified 36 MYC abnormalities and 17 (50.0% of MYC abnormal group with FISH results) displayed a false negative FISH result. MPseq identified 10 cases (14.3%) with IgL rearrangements, a recent marker of poor outcome, and 10% with abnormalities in genes associated with lenalidomide response or resistance. In summary, MPseq was superior in the characterization of rearrangement complexity and identification of secondary abnormalities demonstrating increased clinical value compared to FISH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.