Epithelial‐to‐mesenchymal transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET) have been suggested to play crucial roles in metastatic dissemination of carcinomas. These phenotypic transitions between states are not binary. Instead, carcinoma cells often exhibit a spectrum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchymal plasticity has been observed preclinically and clinically, whether any of these phenotypic transitions are indispensable for metastatic outgrowth remains an unanswered question. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models.
Despite widespread expression of epidermal growth factor (EGF) receptors (EGFRs) and EGF family ligands in non-smallcell lung cancer (NSCLC), EGFR-specific tyrosine kinase inhibitors (TKIs) such as gefitinib exhibit limited activity in this cancer. We propose that autocrine growth signaling pathways distinct from EGFR are active in NSCLC cells. To this end, gene expression profiling revealed frequent coexpression of specific fibroblast growth factors (FGFs) and FGF receptors (FGFRs) in NSCLC cell lines. It is noteworthy that FGF2 and FGF9 as well as FGFR1 IIIc and/or FGFR2 IIIc mRNA and protein are frequently coexpressed in NSCLC cell lines, especially those that are insensitive to gefitinib. Specific silencing of FGF2 reduced anchorage-independent growth of two independent NSCLC cell lines that secrete FGF2 and coexpress FGFR1 IIIc and/or FGFR2 IIIc. Moreover, a TKI [(Ϯ)-1-(anti-3-hydroxy-cyclopentyl)-3-(4-methoxy-phenyl)-7-phenylamino-3,4-dihydro-1H-pyrimido-[4,5-d]pyrimidin-2-one (RO4383596)] that targets FGFRs inhibited basal FRS2 and extracellular signal-regulated kinase phosphorylation, two measures of FGFR activity, as well as proliferation and anchorage-independent growth of NSCLC cell lines that coexpress FGF2 or FGF9 and FGFRs. By contrast, RO4383596 influenced neither signal transduction nor growth of NSCLC cell lines lacking FGF2, FGF9, FGFR1, or FGFR2 expression. Thus, FGF2, FGF9 and their respective high-affinity FGFRs comprise a growth factor autocrine loop that is active in a subset of gefitinib-insensitive NSCLC cell lines.Autocrine growth factor production by cancer cells provides self-sufficiency in growth signals, one of the six hallmarks of cancer (Hanahan and Weinberg, 2000). Based on the frequent expression of EGFR in NSCLC (Hirsch et al., 2003) as well as the widespread coexpression with various EGF family ligands (Rusch et al., 1997), the EGFR is an attractive candidate for a receptor tyrosine kinase mediating autocrine growth in NSCLC. In this context, the EGFR inhibitors gefitinib and erlotinib were deployed in a series of clinical trials but yielded response rates of only 10 to 20% (Dancey, 2004;Hirsch and Bunn, 2005). Subsequent molecular analysis of the responsive lung tumors revealed a significant enrichment for gain-of-function EGFR mutations (Lynch et al., 2004;Han et al., 2005). The general insensitivity to EGFR-specific TKIs is also reflected in cultured NSCLC cell lines Helfrich et al., 2006). Thus, despite broad expression of EGFR in NSCLC, only a subset responds to EGFR inhibitors. Whereas rare mutations in EGFR that render the tyrosine kinase resistant to gefitinib and erlotinib have been identified (Pao et al., 2005), the limited response of NSCLC to The studies were supported by National Institutes of Health grants R01-CA116527, R01-CA127105, P30-CA046934, and P50-CA58187 and a Cancer League of Colorado grant (to L.E.H.).Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org. doi:10.1124/mol.108.049544.ABBREVIATIONS: ...
Astrocytomas account for the majority of malignant brain tumors diagnosed in both adult and pediatric patients. The therapies available to treat these neoplasms are limited, and the prognosis associated with high-grade lesions is extremely poor. Mer (MerTK) and Axl receptor tyrosine kinases (RTK) are expressed at abnormally high levels in a variety of malignancies, and these receptors are known to activate strong antiapoptotic signaling pathways that promote oncogenesis. In this study, we found that Mer and Axl mRNA transcript and protein expression were elevated in astrocytic patient samples and cell lines. shRNA-mediated knockdown of Mer and Axl RTK expression led to an increase in apoptosis in astrocytoma cells. Apoptotic signaling pathways including Akt and extracellular signal–regulated kinase 1/2, which have been shown to be activated in resistant astrocytomas, were downregulated with Mer and Axl inhibition whereas poly(ADP-ribose) poly-merase cleavage was increased. Furthermore, Mer and Axl shRNA knockdown led to a profound decrease of astrocytoma cell proliferation in soft agar and a significant increase in chemosensitivity in response to temozolomide, carboplatin, and vincristine treatment. Our results suggest Mer and Axl RTK inhibition as a novel method to improve apoptotic response and chemosensitivity in astrocytoma and provide support for these oncogenes as attractive biological targets for astrocytoma drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.