Glucose toxicity of the pancreatic beta cell is considered to play a secondary role in the pathogenesis of type II diabetes mellitus. To gain insights into possible mechanisms of action of glucose toxicity, we designed studies to assess whether the loss of insulin secretion associated with serial passages of HIT-T15 cells might be caused by chronic exposure to high glucose levels since these cells are routinely cultured in media containing supramaximal stimulatory concentrations of glucose. We found that late passages of HIT cells serially cultured in media containing 11.1 mM glucose lost insulin responsivity and had greatly diminished levels of insulin content and insulin mRNA. In marked contrast, late passages of HIT cells cultured serially in media containing 0.8 mM glucose retained insulin mRNA, insulin content, and insulin responsivity to glucose in static incubations and during perifusion with glucose. No insulin gene mutation or alteration of levels of GLUT-2 were found in late passages of HIT cells cultured with media containing 11.1 mM glucose. These data uniquely indicate that loss of beta cell function in HIT cells passed serially under high glucose conditions is caused by loss of insulin mRNA, insulin content, and insulin secretion and is preventable by culturing HIT cells under low glucose conditions. This strongly suggests potential genetic mechanisms of action for glucose tokicity of beta cells. (J. Clin. Invest. 1992.90:320-325.)
Intrahepatic transplantation of as few as 265,000 islets can result in the release of insulin and glucagon at appropriate times and in prolonged periods of insulin independence.
Cystic fibrosis (CF) patients demonstrate a spectrum of pancreatic beta-cell abnormalities. Those with no exocrine insufficiency (NEXO) have normal insulin secretion. Exocrine-insufficient CF patients with overt diabetes (EXO-IT) have impaired insulin secretion and fasting hyperglycemia. Exocrine-insufficient patients without diabetes (EXO) have impaired insulin secretion but maintain normoglycemia. We postulated that EXO individuals compensate for insulin deficiency by increasing insulin sensitivity and investigated glucose utilization in CF. To examine hepatic and peripheral insulin sensitivity, euglycemic-hyperinsulinemic clamp studies were performed by using the hot GINF isotope dilution technique. Insulin was sequentially infused at 0.25, 1.0, and 10.0 mU.kg-1.min-1. Glucose-mediated glucose uptake (GMGU) was assessed on another day with hyperglycemic clamp studies, during which insulin and somatostatin were infused to hold insulin-mediated glucose uptake constant between the two clamp studies. Skeletal muscle GLUT4 levels were assessed in EXO and control patients with Western blotting. Three patterns of peripheral and hepatic insulin sensitivity were seen that were related to the degree of pancreatic beta-cell dysfunction. NEXO individuals had normal peripheral and hepatic insulin sensitivity. EXO individuals had enhanced peripheral insulin sensitivity that was not associated with a change in skeletal muscle glucose transporter abundance compared with control patients; paradoxically, EXO subjects demonstrated hepatic insulin resistance. EXO-IT had peripheral and hepatic insulin resistance. GMGU was diminished in both EXO and EXO-IT subjects. The unique combination of increased hepatic glucose production and increased peripheral glucose utilization seen in EXO may be a metabolic adaptation to increased peripheral energy needs.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.