SUMMARY.A dense set of single nucleotide polymorphisms (SNP) covering the genome and an efficient method to assess SNP genotypes are expected to be available in the near future. An outstanding question is how to use these technologies efficiently to identify genes affecting liability to complex disorders. To achieve this goal, we propose a statistical method that has several optimal properties: It can be used with casecontrol data and yet, like family-based designs, controls for population heterogeneity; it is insensitive to the usual violations of model assumptions, such as cases failing to be strictly independent; and, by using Bayesian outlier methods, it circumvents the need for Bonferroni correction for multiple tests, leading to better performance in many settings while still constraining risk for false positives. The performance of our genomic control method is quite good for plausible effects of liability genes, which bodes well for future genetic analyses of complex disorders. An outstanding question is how to use SNP technology efficiently. One possibility is to apply it to case-control samples. Case-control studies have numerous advantages for the genetic dissection of complex traits (Morton and Collins, 1998; Risch and Teng, 1998). Case-control studies have been criticized, however, because they rely on the unrealistic assumption of population homogeneity; in the face of population heterogeneity, spurious associations can arise (Li, 1972). Therefore, alternative methods, which employ family-based sampling to obviate the effects of population heterogeneity (Falk
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 ASD cases and 27,969 controls that identifies five genome-wide significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), seven additional loci shared with other traits are identified at equally strict significance levels. Dissecting the polygenic architecture, we find both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis and establish that GWAS performed at scale will be much more productive in the near term in ASD.
Highlights d 102 genes implicated in risk for autism spectrum disorder (ASD genes, FDR % 0.1) d Most are expressed and enriched early in excitatory and inhibitory neuronal lineages d Most affect synapses or regulate other genes; how these roles dovetail is unknown d Some ASD genes alter early development broadly, others appear more specific to ASD
Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors.
Highlights d Three groups of highly genetically-related disorders among 8 psychiatric disorders d Identified 109 pleiotropic loci affecting more than one disorder d Pleiotropic genes show heightened expression beginning in 2 nd prenatal trimester d Pleiotropic genes play prominent roles in neurodevelopmental processes Authors Cross-Disorder Group of the Psychiatric Genomics Consortium
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.