RationaleA quantitative framework to summarize and explain the quasi-stationary population dynamics of unstable phase singularities (PS) and wavelets in human atrial fibrillation (AF) is at present lacking. Building on recent evidence showing that the formation and destruction of PS and wavelets in AF can be represented as renewal processes, we sought to establish such a quantitative framework, which could also potentially provide insight into the mechanisms of spontaneous AF termination.ObjectivesHere, we hypothesized that the observed number of PS or wavelets in AF could be governed by a common set of renewal rate constants λf (for PS or wavelet formation) and λd (PS or wavelet destruction), with steady-state population dynamics modeled as an M/M/∞ birth–death process. We further hypothesized that changes to the M/M/∞ birth–death matrix would explain spontaneous AF termination.Methods and ResultsAF was studied in in a multimodality, multispecies study in humans, animal experimental models (rats and sheep) and Ramirez-Nattel-Courtemanche model computer simulations. We demonstrated: (i) that λf and λd can be combined in a Markov M/M/∞ process to accurately model the observed average number and population distribution of PS and wavelets in all systems at different scales of mapping; and (ii) that slowing of the rate constants λf and λd is associated with slower mixing rates of the M/M/∞ birth–death matrix, providing an explanation for spontaneous AF termination.ConclusionM/M/∞ birth–death processes provide an accurate quantitative representational architecture to characterize PS and wavelet population dynamics in AF, by providing governing equations to understand the regeneration of PS and wavelets during sustained AF, as well as providing insight into the mechanism of spontaneous AF termination.
Chew , The appropriateness of coronary investigation in myocardial injury and Type 2 myocardial infarction (ACT-2): A randomized trial design. Ymhj (2018),
The mechanisms governing cardiac fibrillation remain unclear; however, it most likely represents a form of spatiotemporal chaos with conservative system dynamics. Renewal theory has recently been suggested as a statistical formulation with governing equations to quantify the formation and destruction of wavelets and rotors in fibrillatory dynamics. In this perspective Review, we aim to explain the origin of the renewal theory paradigm in spatiotemporal chaos. The ergodic nature of pattern formation in spatiotemporal chaos is demonstrated through the use of three chaotic systems: two classical systems and a simulation of cardiac fibrillation. The logistic map and the baker's transformation are used to demonstrate how the apparently random appearance of patterns in classical chaotic systems has macroscopic parameters that are predictable in a statistical sense. We demonstrate that the renewal theory approach developed for cardiac fibrillation statistically predicts pattern formation in these classical chaotic systems. Renewal theory provides governing equations to describe the apparently random formation and destruction of wavelets and rotors in atrial fibrillation (AF) and ventricular fibrillation (VF). This statistical framework for fibrillatory dynamics provides a holistic understanding of observed rotor and wavelet dynamics and is of conceptual significance in informing the clinical and mechanistic research of the rotor and multiple-wavelet mechanisms of AF and VF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.