A concerted effort to tackle the global health problem posed by traumatic brain injury (TBI) is long overdue. TBI is a public health challenge of vast, but insufficiently recognised, proportions. Worldwide, more than 50 million people have a TBI each year, and it is estimated that about half the world's population will have one or more TBIs over their lifetime. TBI is the leading cause of mortality in young adults and a major cause of death and disability across all ages in all countries, with a disproportionate burden of disability and death occurring in low-income and middle-income countries (LMICs). It has been estimated that TBI costs the global economy approximately $US400 billion annually. Deficiencies in prevention, care, and research urgently need to be addressed to reduce the huge burden and societal costs of TBI. This Commission highlights priorities and provides expert recommendations for all stakeholders—policy makers, funders, health-care professionals, researchers, and patient representatives—on clinical and research strategies to reduce this growing public health problem and improve the lives of people with TBI.Additional co-authors: Endre Czeiter, Marek Czosnyka, Ramon Diaz-Arrastia, Jens P Dreier, Ann-Christine Duhaime, Ari Ercole, Thomas A van Essen, Valery L Feigin, Guoyi Gao, Joseph Giacino, Laura E Gonzalez-Lara, Russell L Gruen, Deepak Gupta, Jed A Hartings, Sean Hill, Ji-yao Jiang, Naomi Ketharanathan, Erwin J O Kompanje, Linda Lanyon, Steven Laureys, Fiona Lecky, Harvey Levin, Hester F Lingsma, Marc Maegele, Marek Majdan, Geoffrey Manley, Jill Marsteller, Luciana Mascia, Charles McFadyen, Stefania Mondello, Virginia Newcombe, Aarno Palotie, Paul M Parizel, Wilco Peul, James Piercy, Suzanne Polinder, Louis Puybasset, Todd E Rasmussen, Rolf Rossaint, Peter Smielewski, Jeannette Söderberg, Simon J Stanworth, Murray B Stein, Nicole von Steinbüchel, William Stewart, Ewout W Steyerberg, Nino Stocchetti, Anneliese Synnot, Braden Te Ao, Olli Tenovuo, Alice Theadom, Dick Tibboel, Walter Videtta, Kevin K W Wang, W Huw Williams, Kristine Yaffe for the InTBIR Participants and Investigator
for the Pediatric Emergency Research Canada (PERC) Concussion Team IMPORTANCE Approximately one-third of children experiencing acute concussion experience ongoing somatic, cognitive, and psychological or behavioral symptoms, referred to as persistent postconcussion symptoms (PPCS). However, validated and pragmatic tools enabling clinicians to identify patients at risk for PPCS do not exist. OBJECTIVE To derive and validate a clinical risk score for PPCS among children presenting to the emergency department. DESIGN, SETTING, AND PARTICIPANTS Prospective, multicenter cohort study (Predicting and Preventing Postconcussive Problems in Pediatrics [5P]) enrolled young patients (aged 5-<18 years) who presented within 48 hours of an acute head injury at 1 of 9 pediatric emergency departments within the Pediatric Emergency Research Canada (PERC) network from August 2013 through September 2014 (derivation cohort) and from October 2014 through June 2015 (validation cohort). Participants completed follow-up 28 days after the injury. EXPOSURES All eligible patients had concussions consistent with the Zurich consensus diagnostic criteria. MAIN OUTCOMES AND MEASURES The primary outcome was PPCS risk score at 28 days, which was defined as 3 or more new or worsening symptoms using the patient-reported Postconcussion Symptom Inventory compared with recalled state of being prior to the injury. RESULTS In total, 3063 patients (median age, 12.0 years [interquartile range, 9.2-14.6 years]; 1205 [39.3%] girls) were enrolled (n = 2006 in the derivation cohort; n = 1057 in the validation cohort) and 2584 of whom (n = 1701 [85%] in the derivation cohort; n = 883 [84%] in the validation cohort) completed follow-up at 28 days after the injury. Persistent postconcussion symptoms were present in 801 patients (31.0%) (n = 510 [30.0%] in the derivation cohort and n = 291 [33.0%] in the validation cohort). The 12-point PPCS risk score model for the derivation cohort included the variables of female sex, age of 13 years or older, physician-diagnosed migraine history, prior concussion with symptoms lasting longer than 1 week, headache, sensitivity to noise, fatigue, answering questions slowly, and 4 or more errors on the Balance Error Scoring System tandem stance. The area under the curve was 0.71 (95% CI, 0.69-0.74) for the derivation cohort and 0.68 (95% CI, 0.65-0.72) for the validation cohort. CONCLUSIONS AND RELEVANCEA clinical risk score developed among children presenting to the emergency department with concussion and head injury within the previous 48 hours had modest discrimination to stratify PPCS risk at 28 days. Before this score is adopted in clinical practice, further research is needed for external validation, assessment of accuracy in an office setting, and determination of clinical utility.
IMPORTANCEAlthough concussion treatment guidelines advocate rest in the immediate postinjury period until symptoms resolve, no clear evidence has determined that avoiding physical activity expedites recovery.OBJECTIVE To investigate the association between participation in physical activity within 7 days postinjury and incidence of persistent postconcussive symptoms (PPCS). DESIGN, SETTING, AND PARTICIPANTS Prospective, multicenter cohort study (August 2013-June 2015) of 3063 children and adolescents aged 5.00-17.99 years with acute concussion from 9 Pediatric Emergency Research Canada network emergency departments (EDs).EXPOSURES Early physical activity participation within 7 days postinjury.MAIN OUTCOMES AND MEASURES Physical activity participation and postconcussive symptom severity were rated using standardized questionnaires in the ED and at days 7 and 28 postinjury. PPCS (Ն3 new or worsening symptoms on the Post-Concussion Symptom Inventory) was assessed at 28 days postenrollment. Early physical activity and PPCS relationships were examined by unadjusted analysis, 1:1 propensity score matching, and inverse probability of treatment weighting (IPTW). Sensitivity analyses examined patients (Ն3 symptoms) at day 7. RESULTS Among 2413 participants who completed the primary outcome and exposure, (mean [SD] age, 11.77 [3.35] years; 1205 [39.3%] females), PPCS at 28 days occurred in 733 (30.4%); 1677 (69.5%) participated in early physical activity including light aerobic exercise (n = 795 [32.9%]), sport-specific exercise (n = 214 [8.9%]), noncontact drills (n = 143 [5.9%]), full-contact practice (n = 106 [4.4%]), or full competition (n = 419 [17.4%]), whereas 736 (30.5%) had no physical activity. On unadjusted analysis, early physical activity participants had lower risk of PPCS than those with no physical activity (24.6% vs 43.5%; Absolute risk difference [ARD], 18.9% [95% CI,14.7%-23.0%]). Early physical activity was associated with lower PPCS risk on propensity score matching (n = 1108 [28.7% for early physical activity vs 40.1% for no physical activity]; ARD, 11.4% [95% CI, 5.8%-16.9%]) and on inverse probability of treatment weighting analysis (n = 2099; relative risk [RR], 0.74 [95% CI, 0.65-0.84]; ARD, 9.7% [95% CI, 5.7%-13.7%]). Among only patients symptomatic at day 7 (n = 803) compared with those who reported no physical activity (n = 584; PPCS, 52.9%), PPCS rates were lower for participants of light aerobic activity (n = 494 [46.4%]; ARD, 6.5% [95% CI, 5.7%-12.5%]), moderate activity (n = 176 [38.6%]; ARD, 14.3% [95% CI, 5.9%-22.2%]), and full-contact activity (n = 133 [36.1%]; ARD, 16.8% [95% CI, 7.5%-25.5%]). No significant group difference was observed on propensity-matched analysis of this subgroup (n = 776 [47.2% vs 51.5%]; ARD, 4.4% [95% CI, −2.6% to 11.3%]).CONCLUSIONS AND RELEVANCE Among participants aged 5 to 18 years with acute concussion, physical activity within 7 days of acute injury compared with no physical activity was associated with reduced risk of PPCS at 28 days. A well-designed rand...
Learning curves, which graphically show the relationship between learning effort and achievement, are common in published education research but are not often used in day-to-day educational activities. The purpose of this article is to describe the generation and analysis of learning curves and their applicability to health professions education. The authors argue that the time is right for a closer look at using learning curves-given their desirable properties-to inform both self-directed instruction by individuals and education management by instructors.A typical learning curve is made up of a measure of learning (y-axis), a measure of effort (x-axis), and a mathematical linking function. At the individual level, learning curves make manifest a single person's progress towards competence including his/her rate of learning, the inflection point where learning becomes more effortful, and the remaining distance to mastery attainment. At the group level, overlaid learning curves show the full variation of a group of learners' paths through a given learning domain. Specifically, they make overt the difference between time-based and competency-based approaches to instruction. Additionally, instructors can use learning curve information to more accurately target educational resources to those who most require them.The learning curve approach requires a fine-grained collection of data that will not be possible in all educational settings; however, the increased use of an assessment paradigm that explicitly includes effort and its link to individual achievement could result in increased learner engagement and more effective instructional design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.