Synopsis Hearing loss (HL) is one of the most common birth defects in developed countries and is a diverse pathology with different classifications. One of these is based on the association with other clinical features, defined as syndromic hearing loss (SHL). Determining the etiology of the HL in these patients is extremely beneficial as it enables a personalized approach to caring for the individual. Early screening can further aid in optimal rehabilitation for a child’s development and growth. Pathogenic variants in forty-five genes, encoding proteins functioning as ion channels, transcription factors, molecular motors and more, are known to lead to eleven forms of SHL. The development of high-throughput sequencing technology is facilitating rapid and low-cost diagnostics for patients with SHL.
BackgroundThe quantitative relations between RNA and protein are fundamental to biology and are still not fully understood. Across taxa, it was demonstrated that the protein-to-mRNA ratio in steady state varies in a direction that lessens the change in protein levels as a result of changes in the transcript abundance. Evidence for this behavior in tissues is sparse. We tested this phenomenon in new data that we produced for the mouse auditory system, and in previously published tissue datasets. A joint analysis of the transcriptome and proteome was performed across four datasets: inner-ear mouse tissues, mouse organ tissues, lymphoblastoid primate samples and human cancer cell lines.ResultsWe show that the protein levels are more conserved than the mRNA levels in all datasets, and that changes in transcription are associated with translational changes that exert opposite effects on the final protein level, in all tissues except cancer. Finally, we observe that some functions are enriched in the inner ear on the mRNA level but not in protein.ConclusionsWe suggest that partial buffering between transcription and translation ensures that proteins can be made rapidly in response to a stimulus. Accounting for the buffering can improve the prediction of protein levels from mRNA levels.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3683-9) contains supplementary material, which is available to authorized users.
Background:The superior olivary complex (SOC) is an essential center for spatial hearing. Results: Generation of a comprehensive qualitative and quantitative catalogue of the developmental changes in the SOC-related gene repertoire. Conclusion: Postnatal maturation of the SOC is shaped by extensive molecular changes. Significance: This work identifies strong candidate genes for normal and impaired hearing and genetic evidence for retrocochlear functions of deafness genes.
The planar cell polarity (PCP) pathway is responsible for polarizing and orienting cochlear hair cells during development through movement of a primary cilium, the kinocilium. GPSM2/LGN, a mitotic spindle-orienting protein associated with deafness in humans, is a PCP effector involved in kinocilium migration. Here, we link human and mouse truncating mutations in the GPSM2/LGN gene, both leading to hearing loss. The human variant, p.(Trp326*), was identified by targeted genomic enrichment of genes associated with deafness, followed by massively parallel sequencing. LgnΔC mice, with a targeted deletion truncating the C-terminal GoLoco motifs, are profoundly deaf and show misorientation of the hair bundle and severe malformations in stereocilia shape that deteriorates over time. Full-length protein levels are greatly reduced in mutant mice, with upregulated mRNA levels. The truncated LgnΔC allele is translated in vitro, suggesting that mutant mice may have partially functioning Lgn. Gαi and aPKC, known to function in the same pathway as Lgn, are dependent on Lgn for proper localization. The polarization of core PCP proteins is not affected in Lgn mutants; however, Lgn and Gαi are misoriented in a PCP mutant, supporting the role of Lgn as a PCP effector. The kinocilium, previously shown to be dependent on Lgn for robust localization, is essential for proper localization of Lgn, as well as Gαi and aPKC, suggesting that cilium function plays a role in positioning of apical proteins. Taken together, our data provide a mechanism for the loss of hearing found in human patients with GPSM2/LGN variants.
Mammalian genomes encode multiple layers of regulation, including a class of RNA molecules known as long non-coding RNAs (lncRNAs). These are >200 nucleotides in length and similar to mRNAs, they are capped, polyadenylated, and spliced. In contrast to mRNAs, lncRNAs are less abundant and have higher tissue specificity, and have been linked to development, epigenetic processes, and disease. However, little is known about lncRNA function in the auditory and vestibular systems, or how they play a role in deafness and vestibular dysfunction. To help address this need, we performed a whole-genome identification of lncRNAs using RNA-seq at two developmental stages of the mouse inner ear sensory epithelium of the cochlea and vestibule. We identified 3,239 lncRNA genes, most of which were intergenic (lincRNAs) and 721 are novel. We examined temporal and tissue specificity by analyzing the developmental profiles on embryonic day 16.5 and at birth. The spatial and temporal patterns of three lncRNAs, two of which are in proximity to genes associated with hearing and deafness, were explored further. Our findings indicate that lncRNAs are prevalent in the sensory epithelium of the mouse inner ear and are likely to play key roles in regulating critical pathways for hearing and balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.