Leptospiral immunoglobulin-like (Lig) proteins are of great interest due to their ability to act as mediators of pathogenesis, serodiagnostic antigens, and immunogens. Purified recombinant LigA protein is the most promising subunit vaccine candidate against leptospirosis reported to date, however, as purified proteins are weak immunogens the use of a potent adjuvant is essential for the success of LigA as a subunit vaccine. In the present study, we compared xanthan pv. pruni (strain 106), aluminium hydroxide (alhydrogel), and CpG ODN as adjuvants in a LigA subunit vaccine preparation. Xanthan gum is a high molecular weight extracellular polysaccharide produced by fermentation of Xanthomonas spp., a plant-pathogenic bacterium genus. Preparations containing xanthan induced a strong antibody response comparable to that observed when alhydrogel was used. Upon challenge with a virulent strain of L. interrogans serovar Copenhageni, significant protection (Fisher test, P < 0.05) was observed in 100%, 100%, and 67% of hamsters immunized with rLigANI-xanthan, LigA-CpG-xanthan, and rLigANI-alhydrogel, respectively. Furthermore, xanthan did not cause cytotoxicity in Chinese hamster ovary (CHO) cells in vitro. The use of xanthan as an adjuvant is a novel alternative for enhancing the immunogenicity of vaccines against leptospirosis and possibly against other pathogens.
Immunisation with the C-terminal region of leptospiral immunoglobulin-like A protein
(LigANI) has shown promising results against leptospirosis. We evaluated the humoral
immune response and protection induced by LigANI associated with carboxyl
multi-walled carbon nanotubes (COOH-MWCNTs), CpG oligodeoxynucleotides (CpG ODNs), or
Alhydrogel. Animals immunised with CpG ODNs were unable to develop a humoral immune
response, whereas immunisation with LigANI and COOH-MWCNTs produced a high level of
IgG antibodies, similar to that with LigANI and Alhydrogel, but it was not
protective. The use of carbon nanotubes as an adjuvant in subunit vaccines against
leptospirosis is a novel approach for improving specific IgG production.
Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of
theLeptospira genus. Vaccination with bacterins has severe
limitations. Here, we evaluated the N-terminal region of the leptospiral
immunoglobulin-like B protein (LigBrep) as a vaccine candidate against leptospirosis
using immunisation strategies based on DNA prime-protein boost, DNA vaccine, and
subunit vaccine. Upon challenge with a virulent strain ofLeptospira
interrogans, the prime-boost and DNA vaccine approaches induced
significant protection in hamsters, as well as a specific IgG antibody response and
sterilising immunity. Although vaccination with recombinant fragment of LigBrep also
produced a strong antibody response, it was not immunoprotective. These results
highlight the potential of LigBrep as a candidate antigen for an effective vaccine
against leptospirosis and emphasise the use of the DNA prime-protein boost as an
important strategy for vaccine development.
The C-terminal region of the Leptospiral immunoglobulin-like A protein (LigA) contains six carboxy-terminal Ig-like repeat domains (LigANI). Subunit vaccine preparations based on recombinant LigANI produced in Escherichia coli, are promising vaccine candidates, albeit with variable efficacy. In the present study, LigANI was expressed in the methylotrophic yeast Pichia pastoris using a 12 L bioreactor to produce mannosylated LigANI (mLigANI) for use in a vaccine preparation against leptospirosis. Hamsters immunized with a mLigANI vaccine preparation produced a significant IgG antibody response (P < 0.001) and were protected (83.3 %; P < 0.001) against lethal challenge with 36× LD50 of a virulent strain of L. interrogans serovar Copenhageni. A vaccine preparation based on demannosylated mLigANI (nmLigANI) elicited an immune response in hamsters, but did not afford protection. The production of mLigANI in bioreactor by P. pastoris yielded ~50 mg L(-1) of recombinant protein. P. pastoris is a potential platform for the production of leptospiral antigens on an industrial scale. The results demonstrate that LigANI secreted by P. pastoris on mannosylated form (mLigANI) protect hamsters as subunit vaccine of L. interrogans lethal infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.