P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid rafts to gain its full functionality.
The fungal pathogen Candida albicans is a leading causative agent of death in immunocompromised individuals. Many factors have been implicated in virulence including filamentation-inducing transcription factors, adhesins, lipases and proteases. Many of these factors are glycosylphosphatidylinositol-anchored cell surface antigenic determinant proteins. Pga1 is one such protein shown to be upregulated during cell wall regeneration. The purpose of this study was to characterise the role Pga1 plays by creating a homozygous pga1 null strain and comparing the phenotype with the parental strain. It was observed that the mutant strain showed less oxidative stress tolerance and an increased susceptibility to calcofluor white, a cell surface disrupting agent that inhibits chitin fibre assembly which translated as a 40% decrease in cell wall chitin content. Furthermore, the mutant exhibited a 50% reduction in adhesion and a 33% reduction in biofilm formation compared with the parental strain, which was reflected as a slight reduction in virulence. Our data suggest that Pga1 plays an important role in cell wall rigidity and stability. It was also observed that the pga1 null was over filamentous on both liquid and solid media and exhibited increased resistance to SDS suggesting upregulation of filamentation-inducing genes and cell surface components to partially compensate for the deletion.
It is still not entirely clear how α-galactosidase A (GAA) deficiency translates into clinical symptoms of Fabry disease (FD). The present communication investigates the effects of the mutation N215S in FD on the trafficking and processing of lysosomal GAA and their potential association with alterations in the membrane lipid composition. Abnormalities in lipid rafts (LRs) were observed in fibroblasts isolated from a male patient with FD bearing the mutation N215S. Interestingly, LR analysis revealed that the distribution of cholesterol and flotillin-2 are distinctly altered in the Fabry fibroblasts when compared with that of the wild-type cells. Furthermore, increased levels of glycolipid globotriaosylceramide 3 (Gb3) and sphingomyelin (SM) were observed in non-raft membrane fractions of Fabry cells. Substrate reduction with N-butyldeoxynojirimycin (NB-DNJ) in vitro was capable of reversing these abnormalities in this patient. These data led to the hypothesis that alterations of LRs may contribute to the pathophysiology of Morbus Fabry. Furthermore, it may be suggested that substrate reduction therapy with NB-DNJ might be a promising approach for the treatment of GAA deficiency at least for the selected patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.