Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.psychology | behavior | comparative methods | inhibitory control | executive function S ince Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (2-40) and potentially derived features of human psychology (41-61), we know much less about the major forces shaping cognitive evolution (62-71). With the notable exception of Bitterman's landmark studies conducted several decades ago (63, 72-74), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (76-92). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48,70,89,(93)(94)(95)(96)(97)(98). SignificanceAlthough scientists have identified surprising cognitive flexibility in animals and potentially unique features of human psychology, we know less about the selective forces that favor cognitive evolution, or the proximate biological mechanisms underlying this process. We tested 36 species in two problemsolving tasks measuring self-control and evaluated the leading hypotheses regarding how ...
International audienceLanguage's intentional nature has been highlighted as a crucial feature distinguishing it from other communication systems. Specifically, language is often thought to depend on highly structured intentional action and mutual mindreading by a communicator and recipient. Whilst similar abilities in animals can shed light on the evolution of intentionality, they remain challenging to detect unambiguously. We revisit animal intentional communication and suggest that progress in identifying analogous capacities has been complicated by (i) the assumption that intentional (that is, voluntary) production of communicative acts requires mental-state attribution, and (ii) variation in approaches investigating communication across sensory modalities. To move forward, we argue that a framework fusing research across modalities and species is required. We structure intentional communication into a series of requirements, each of which can be operationalised, investigated empirically, and must be met for purposive, intentionally communicative acts to be demonstrated. Our unified approach helps elucidate the distribution of animal intentional communication and subsequently serves to clarify what is meant by attributions of intentional communication in animals and humans
Determining the intentionality of primate communication is critical to understanding the evolution of human language. Although intentional signalling has been claimed for some great ape gestural signals, comparable evidence is currently lacking for their vocal signals. We presented wild chimpanzees with a python model and found that two of three alarm call types exhibited characteristics previously used to argue for intentionality in gestural communication. These alarm calls were: (i) socially directed and given to the arrival of friends, (ii) associated with visual monitoring of the audience and gaze alternations, and (iii) goal directed, as calling only stopped when recipients were safe from the predator. Our results demonstrate that certain vocalisations of our closest living relatives qualify as intentional signals, in a directly comparable way to many great ape gestures. We conclude that our results undermine a central argument of gestural theories of language evolution and instead support a multimodal origin of human language.
Wild chimpanzees produce acoustically distinct scream vocalizations depending on their social role during agonistic interactions with other group members. Here, we show that victims during such agonistic interactions alter the acoustic structure of their screams depending on the severity of aggression experienced, providing nearby listeners with important cues about the nature of the attack. However, we also found that victims of severe attacks produced screams that significantly exaggerated the true level of aggression experienced, but they did so only if there was at least one listener in the audience who matched or surpassed the aggressor in rank. Our results are consistent with the more general hypothesis that chimpanzees possess sophisticated understanding of third-party relationships, so-called triadic awareness, and that this knowledge influences their vocal production.audience effect ͉ language evolution ͉ Pan troglodytes ͉ primate vocalizations ͉ social intelligence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.