Successful integrated vector management programs may need new strategies in addition to conventional larviciding and adulticiding strategies to target Aedes aegypti and Ae. albopictus, which can develop in small, often cryptic, artificial and natural containers. The In2Care® mosquito trap was recently developed to target and kill larval and adult stages of these invasive container-inhabiting Aedes mosquitoes by utilizing autodissemination. Gravid females that visit the trap pick up pyriproxyfen (PPF) that they later transfer to nearby larval habitats as well as Beauveria bassiana spores that slowly kill them. We assessed the efficacy of the In2Care mosquito trap in a semifield setting against locally sourced strains of Ae. aegypti and Ae. albopictus. We found that the In2Care mosquito trap is attractive to gravid Ae. aegypti and Ae. albopictus females and serves as an egg sink, preventing any adult emergence from the trap (P = 0.0053 for both species). Adult females successfully autodisseminated PPF to surrounding water-filled containers, leading to a statistically significant reduction in new mosquito emergence (P ≤ 0.0002 for both species). Additionally, we found effective contamination with Beauveria bassiana spores, which significantly reduced the survivorship of exposed Ae. aegypti and Ae. albopictus (P ≤ 0.008 for both species in all experimental setups). In summary, the In2Care mosquito trap successfully killed multiple life stages of 2 main mosquito vector species found in Florida under semifield conditions.
The incidence of locally acquired dengue infections increased during the last decade in the United States, compelling a sustained research effort concerning the dengue mosquito vector, Aedes aegypti, and its microbiome, which has been shown to influence virus transmission success. We examined the "metavirome" of four populations of Aedes aegypti mosquitoes collected in 2016 to 2017 in Manatee County, FL. Unexpectedly, we discovered that dengue virus serotype 4 (DENV4) was circulating in these mosquito populations, representing the first documented case of such a phenomenon in the absence of a local DENV4 human case in this county over a 2-year period. We confirmed that all of the mosquito populations carried the same DENV4 strain, assembled its full genome, validated infection orthogonally by reverse transcriptase PCR, traced the virus origin, estimated the time period of its introduction to the Caribbean region, and explored the viral genetic signatures and mosquito-specific virome associations that potentially mediated DENV4 persistence in mosquitoes. We discuss the significance of prolonged maintenance of the DENV4 infections in A. aegypti that occurred in the absence of a DENV4 human index case in Manatee County with respect to the inability of current surveillance paradigms to detect mosquito vector infections prior to a potential local outbreak. IMPORTANCE Since 1999, dengue outbreaks in the continental United States involving local transmission have occurred only episodically and only in Florida and Texas. In Florida, these episodes appear to be coincident with increased introductions of dengue virus into the region through human travel and migration from countries where the disease is endemic. To date, the U.S. public health response to dengue outbreaks has been largely reactive, and implementation of comprehensive arbovirus surveillance in advance of predictable transmission seasons, which would enable proactive preventative efforts, remains unsupported. The significance of our finding is that it is the first documented report of DENV4 transmission to and maintenance within a local mosquito vector population in the continental United States in the ab-
Aedes aegypti is the predominant vector of dengue, chikungunya, and Zika viruses. This mosquito is difficult to control with conventional methods due to its container-inhabiting behavior and resistance to insecticides. Autodissemination of pyriproxyfen (PPF), a potent larvicide, has shown promise as an additional tool to control Aedes species in small-scale field trials. However, few large-scale field evaluations have been conducted. We undertook a 6-month-long large-scale field study to compare the effectiveness and operational feasibility of using In2Care Mosquito Traps (In2Care Traps, commercially available Aedes traps with PPF and Beauveria bassiana) compared to an integrated vector management (IVM) strategy consisting of source reduction, larviciding, and adulticiding for controlling Ae. aegypti eggs, larvae, and adults. We found that while the difference between treatments was only statistically significant for eggs and larvae (P < 0.05 for eggs and larvae and P > 0.05 for adults), the use of In2Care Traps alone resulted in 60%, 57%, and 57% fewer eggs, larvae, and adults, respectively, collected from that site compared to the IVM site. However, In2Care Trap deployment and maintenance were more time consuming and labor intensive than the IVM strategy. Thus, using In2Care Traps alone as a control method for large areas (e.g., >20 ha) may be less practical for control programs with the capacity to conduct ground and aerial larviciding and adulticiding. Based on our study results, we conclude that In2Care Traps are effective at suppressing Ae. aegypti and have the most potential for use in areas without sophisticated control programs and within IVM programs to target hotspots with high population levels and/or risk of Aedes-borne pathogen transmission.
Florida faces the challenge of repeated introduction and autochthonous transmission of arboviruses transmitted by Aedes aegypti and Aedes albopictus. Empirically-based predictive models of the spatial distribution of these species would aid surveillance and vector control efforts. To predict the occurrence and abundance of these species, we fit a mixed-effects zero-inflated negative binomial regression to a mosquito surveillance dataset with records from more than 200,000 trap days, representative of 53% of the land area and ranging from 2004 to 2018 in Florida. We found an asymmetrical competitive interaction between adult populations of Aedes aegypti and Aedes albopictus for the sampled sites. Wind speed was negatively associated with the occurrence and abundance of both vectors. Our model predictions show high accuracy (72.9% to 94.5%) in validation tests leaving out a random 10% subset of sites and data since 2017, suggesting a potential for predicting the distribution of the two Aedes vectors.
We investigated five formulations containing synergized permethrin/PBO active ingredients, Biomist® 30-30, Evoluer® 30-30, Kontrol™ 30-30, Permanone® 30-30, and Perm-X™ UL 30-30, to determine whether there was variation in efficacy against caged local field collected adult Aedes aegypti, Aedes taeniorhynchus, and Culex quinquefasciatus mosquitoes. Mortality data from field trials with these formulations applied via truck mounted ultra-low volume sprays at mid (113 mL/ha [1.55 oz/A]) and maximum (226 mL/ha [3.10 oz/A]) label rates indicated generally low efficacy against Ae. aegypti and Cx. quinquefasciatus but generally high efficacy against Ae. taeniorhynchus. We discuss potential underlying mechanisms for this variation including effects of meteorology and resistance, and how field-derived efficacy data may be used operationally by mosquito and vector control districts to mitigate cost, environmental impact, and pesticide resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.