Urinary catheterization is one of the most common medical procedures that makes a patient susceptible to infection due to biofilm formation on the urinary catheter. Catheter associated urinary tract infections (CAUTIs) are responsible for over 1 million cases in the United States alone and cost the healthcare industry more than $350 million every year. This work presents a liquid-infused nitric-oxide-releasing (LINORel) urinary catheter fabricated by incorporating the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) and silicone oil into commercial silicone Foley catheters through a two-stage swelling process. This synergistic combination improves NO-releasing materials by providing minimal SNAP leaching and a more controlled release of NO while incorporating the nonfouling characteristics of liquid-infused materials. The LINORel urinary catheter was successful in sustaining a controlled NO release over a 60 day period under physiological conditions with minimal SNAP leaching during the initial 24 h period, 0.49 ± 0.0061%. The LINORel-UC proved successful in reducing bacterial adhesion and biofilm formation for Gram positive Staphylococcus aureus (98.49 ± 2.06%) over a 7 day period in a drip flow bioreactor environment. Overall, this study presents a desirable combination that incorporates the antifouling advantages of liquid-infused materials with the active release of a bactericidal agent, an uncharted territory in aiding to prevent the risk of CAUTIs.
The chances of ventilator‐associated pneumonia (VAP) increases 6–20 folds when an endotracheal tube (ETT) is placed in a patient. VAP is one of the most common hospital‐acquired infections and comprises 86% of the nosocomial pneumonia cases. This study introduces the idea of nitric oxide‐releasing ETTs (NORel‐ETTs) fabricated by the incorporation of the nitric oxide (NO) donor S‐nitroso‐N‐acetylpenicillamine (SNAP) into commercially available ETTs via solvent swelling. The impregnation of SNAP provides NO release over a 7‐day period without altering the mechanical properties of the ETT. The NORel‐ETTs successfully reduced the bacterial infection from a commonly found pathogen in VAP, Pseudomonas aeruginosa, by 92.72 ± 0.97% when compared with the control ETTs. Overall, this study presents the incorporation of the active release of a bactericidal agent in ETTs as an efficient strategy to prevent the risk of VAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.