Pulmonary edema is mediated in part by disruption of interendothelial cell contacts. Protein tyrosine phosphatases (PTP) have been shown to affect both cell-extracellular matrix and cell-cell junctions. The SH2 domain-containing nonreceptor PTP, SHP2, is involved in intercellular signaling through direct interaction with adherens junction proteins. In this study, we examined the role of SHP2 in pulmonary endothelial barrier function. Inhibition of SHP2 promoted edema formation in rat lungs and increased monolayer permeability in cultured lung endothelial cells. In addition, pulmonary endothelial cells demonstrated a decreased level of p190RhoGAP activity following inhibition of SHP2, events that were accompanied by a concomitant increase in RhoA activity. Furthermore, immunofluorescence microscopy confirmed enhanced actin stress fiber formation and diminished interendothelial staining of adherens junction complex-associated proteins upon SHP2 inhibition. Finally, immunoprecipitation and immunoblot analyses demonstrated increased tyrosine phosphorylation of VE-cadherin, beta-catenin, and p190RhoGAP proteins, as well as decreased association between p120-catenin and VE-cadherin proteins. Our findings suggest that SHP2 supports basal pulmonary endothelial barrier function by coordinating the tyrosine phosphorylation profile of VE-cadherin, beta-catenin, and p190RhoGAP and the activity of RhoA, signaling molecules important in adherens junction complex integrity.
The embryonic transcription factor Oct-4 is often referred to as the master regulator of the undifferentiated state. Although its role in maintaining embryonic stem (ES) cell pluripotency is well established, its ability to directly reprogram committed somatic cells is not well defined. Using transient transfection, we tested its ability to revert mouse interfollicular epidermal basal keratinocytes to a more ES cell-like state. We found that the Oct-4-transfected keratinocytes expressed the Oct-4 target genes, Sox-2, Nanog, undifferentiated transcription factor 1 (Utf1), and Rex-1. We also noted an increase in developmental potential caused by Oct-4, with the transfected cells able to differentiate into neuronal cells when exposed to neuroectodermal differentiation medium. Control-transfected keratinocytes were unable to respond to the medium, and remained as keratinocytes. These findings suggest that Oct-4 may be the master regulator of the pluripotent state and demonstrate that differentiated somatic cells can be reverted into more developmentally potent cells through the use of a single factor. The latter finding has great implications for therapeutic cell-replacement applications using cells from easily accessible adult tissues, such as the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.