This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
Outbreaks of cucurbit downy mildew caused by Pseudoperonospora cubensis are dependent on the weather but effects of temperature and leaf wetness duration on infection have not been studied for different cucurbits. To determine the effects of these two weather variables on sporangia germination and infection of cucurbit host types by P. cubensis, three host types; cucumber (‘Straight 8’), cantaloupe (‘Kermit’), and acorn squash (‘Table Queen’), were inoculated and exposed to leaf wetness durations of 2 to 24 h at six constant temperatures ranging from 5 to 30°C in growth-chamber experiments. Sporangia germination was assessed after each wetness period, and leaf area infected was assessed 5 and 7 days after inoculation. Germination of sporangia was highest on cantaloupe (16.5 to 85.7%) and lowest on squash (10.7 to 68.9%), while disease severity was highest and lowest on cucumber and cantaloupe, respectively. Host type, temperature, wetness duration and their interactions significantly (P < 0.0001) affected germination and disease severity. Germination and disease data for each host type were separately fitted to a modified form of a Weibull function that characterizes a unimodal response and monotonic increase of germination or infection with temperature and wetness duration, respectively. The effect of host type on germination and infection was characterized primarily by differences in the upper limit parameter in response to temperature. Differences among host types based on other parameters were either small or inconsistent. Temperature and wetness duration that supported a given level of germination or infection varied among host types. At 20°C, 15% leaf area infected was expected following 2, 4, and 8 h of wetness for cucumber, squash, and cantaloupe, respectively. When temperature was increased to 25°C, 15% disease severity was expected following 3, 7, and 15 h of wetness for cucumber, squash, and cantaloupe, respectively. Risk charts were constructed to estimate the potential risk of infection of cucurbit host types by P. cubensis based on prevailing or forecasted temperature and leaf wetness duration. These results will improve the timing and application of the initial fungicide spray for the control of cucurbit downy mildew.
Fundamental to the development of models to predict the spread of cucurbit downy mildew is the ability to determine the escape of Pseudoperonospora cubensis sporangia from infected fields. Aerial concentrations of sporangia, C (sporangia m À3 ), were monitored using Rotorod samplers deployed at 0Á5 to 3Á0 m above a naturally infected cucumber canopy in two sites in central and eastern North Carolina in 2011, where disease severity ranged from 1 to 40%. Standing crop of sporangia was assessed each morning at 07Á00 h EDT and ranged from 320 to 16 170 sporangia m À2 .Disease severity and height above the canopy significantly (P < 0Á0001) affected C with mean concentration (C m ) being high at moderate disease. Values of C m decreased rapidly with canopy height and at a height of 2Á0 m, C m was only 7% of values measured at 0Á5 m when disease was moderate. Daily total flux (F D ) was dependent on disease severity and ranged from 5Á9 to 2242Á3 sporangia m À2. The fraction of available sporangia that escaped the canopy increased from 0Á028 to 0Á171 as average wind speed above the canopy for periods of high C increased from 1Á7 to 3Á6 m s À1. Variations of C m and F D with increasing disease were well described (P < 0Á0001) by a log-normal model with 15% as the threshold above which C m and F D decreased as disease severity increased. These results indicate that disease severity should be used to adjust sporangia escape in spore transport simulation models that are used to predict the risk of spread of cucurbit downy mildew.
The influence of temperature and leaf wetness duration on germination of sporangia and infection of cantaloupe leaves by Pseudoperonospora cubensis was examined in three independent controlled-environment experiments by inoculating plants with a spore suspension and exposing them to a range of leaf wetness durations (2 to 24 h) at six fixed temperatures (5 to 30 degrees C). Germination of sporangia was assessed at the end of each wetness period and infection was evaluated from assessments of disease severity 5 days after inoculation. Three response surface models based on modified forms of the Weibull function were evaluated for their ability to describe germination of sporangia and infection in response to temperature and leaf wetness duration. The models estimated 15.7 to 17.3 and 19.5 to 21.7 degrees C as the optimum temperature (t) range for germination and infection, respectively, with little germination or infection at 5 or 30 degrees C. For wetness periods of 4 to 8 h, a distinct optimum for infection was observed at t = 20 degrees C but broader optimum curves resulted from wetness periods >8 h. Model 1 of the form f(w,t) = f(t) x (1 - exp{-[B x w](D)}) resulted in smaller asymptotic standard errors and yielded higher correlations between observed and predicted germination and infection data than either model 2 of the form f(w,t) = A{1 - exp[- f(t) x (w - C)](D)} or model 3 of the form f(w,t) = [1 - exp{-(B x w)(2)}]/cosh[(t - F)G/2]. Models 1 and 2 had nonsignificant lack-of-fit test statistics for both germination and infection data, whereas a lack-of-fit test was significant for model 3. The models accounted for approximately 87% (model 3) to 98% (model 1) of the total variation in the germination and infection data. In the validation of the models using data generated with a different isolate of P. cubensis, slopes of the regression line between observed and predicted germination and infection data were not significantly different (P> 0.2487) and correlation coefficients between observed and predicted values were high (r(2) > 0.81). Models 1 and 2 were used to construct risk threshold charts that can be used to estimate the potential risk for infection based on observed or forecasted temperature and leaf wetness duration.
Chemical control is currently the most effective method for controlling cucurbit downy mildew (CDM) caused by Pseudoperonospora cubensis. Most commercial cucurbit cultivars, with the exception of a few new cucumber cultivars, lack adequate disease resistance. Fluopicolide and propamocarb were among the most effective fungicides against CDM in the United States between 2006 and 2009. Since then, reduced efficacy of these two fungicides under field conditions was reported starting around 2013 but occurrence of resistance to fluopicolide and propamocarb in field isolates of P. cubensis had not been established. Thirty-one isolates collected from cucurbits in the eastern United States were tested for their sensitivity to fluopicolide and propamocarb using a leaf disc assay. This same set of isolates and four additional isolates (i.e., 35 isolates) were also used to establish the baseline sensitivity of P. cubensis to ethaboxam, an ethylamino-thiazole-carboxamide fungicide, which was recently granted registration to control CDM in the United States. About 65% of the isolates tested were resistant to fluopicolide with at least one resistant isolate being present in samples collected from 12 of the 13 states in the eastern United States. About 74% of the isolates tested were sensitive to propamocarb with at least one resistant isolate being among samples collected from 8 of the 12 states in the study. The frequency of resistance to fluopicolide and propamocarb was high among isolates collected from cucumber, while the frequency was low among isolates collected from other cucurbit host types. All isolates tested were found to be sensitive to ethaboxam and EC50 values ranged from 0.18 to 3.08 mg a.i./liter with a median of 1.55 mg a.i./liter. The ratio of EC50 values for the least sensitive and the most sensitive isolate was 17.1, indicating that P. cubensis isolates were highly sensitive to ethaboxam. The most sensitive isolates to ethaboxam were collected from New York, North Carolina, and Ohio, while the least sensitive isolates were collected from Georgia, Michigan, and New Jersey. These results show that ethaboxam could be a viable addition to fungicide programs used to control CDM in the United States.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.