Summary B cells produce a diverse antibody repertoire by undergoing gene rearrangements. Pathogen exposure induces the clonal expansion of B cells expressing antibodies that can bind the infectious agent. To assess human B cell responses to trivalent seasonal influenza and monovalent pandemic H1N1 vaccination, we sequenced gene rearrangements encoding the immunoglobulin heavy chain, a major determinant of epitope recognition. The magnitude of B cell clonal expansions correlates with an individual’s secreted antibody response to the vaccine and the expanded clones are enriched for those expressing influenza-specific mAbs. Additionally, B cell responses to pandemic influenza H1N1 vaccination and infection in different people show a prominent family of convergent antibody heavy chain gene rearrangements specific to influenza antigens. These results indicate that microbes can induce specific signatures of immunoglobulin gene rearrangements and that pathogen exposure can potentially be assessed from B cell repertoires.
Elderly humans show decreased humoral immunity to pathogens and vaccines, yet the effects of aging on B cells are not fully known. Chronic viral infection by cytomegalovirus (CMV) is implicated as a driver of clonal T cell proliferations in some aging humans, but whether CMV or Epstein-Barr virus (EBV) infection contributes to alterations in the B cell repertoire with age is unclear. We have used high-throughput DNA sequencing of immunoglobulin heavy chain (IGH) gene rearrangements to study the B cell receptor repertoires over two successive years in 27 individuals ranging in age from 20 to 89 years. Some features of the B cell repertoire remain stable with age, but elderly subjects show increased numbers of B cells with long CDR3 regions, a trend toward accumulation of more highly mutated IgM and IgG immunoglobulin genes, and persistent clonal B cell populations in the blood. Seropositivity for CMV or EBV infection alters B cell repertoires, regardless of the individual's age: EBV infection correlates with the presence of persistent clonal B cell expansions, while CMV infection correlates with the proportion of highly mutated antibody genes. These findings isolate effects of aging from those of chronic viral infection on B cell repertoires, and provide a baseline for understanding human B cell responses to vaccination or infectious stimuli.
Common variable immune deficiency (CVID) is the most common symptomatic primary immune deficiency, affecting ∼1 in 25,000 persons. These patients suffer from impaired antibody responses, autoimmunity, and susceptibility to lymphoid cancers. To explore the cellular basis for these clinical phenotypes, we conducted high-throughput DNA sequencing of immunoglobulin heavy chain gene rearrangements from 93 CVID patients and 105 control subjects and sorted naïve and memory B cells from 13 of the CVID patients and 10 of the control subjects. CVID patients showed abnormal VDJ rearrangement and abnormal formation of complementarity determining region 3 (CDR3). We observed decreased selection against antibodies with long CDR3 regions in memory repertoires and decreased V gene replacement, offering possible mechanisms for increased patient autoreactivity. Our data indicate that patient immunodeficiency might derive both from decreased diversity of the naïve B cell pool and decreased somatic hypermutation in memory repertoires. CVID patients also exhibited abnormal clonal expansion of unmutated B cells relative to controls. Although impaired B cell germinal center activation is commonly viewed as causative in CVID, these data indicate that CVID B cells diverge from controls as early as the pro-B cell stage and suggest possible explanations for the increased incidence of autoimmunity, immunodeficiency, and lymphoma CVID patients.
Primary cutaneous B-cell lymphomas (CBCL) are a diverse group of lymphomas that are limited to the skin at the time of diagnosis. Recently, standardized polymerase chain reaction protocols for immunoglobulin (Ig) rearrangement in nodal malignancies using the BIOMED-2 method have been studied extensively. However, reports of investigations of Ig clonality in CBCL using the BIOMED-2 method have been scant. We hypothesized that clonality detection in CBCL with the BIOMED-2 method could effectively distinguish malignant from benign B-cell-rich infiltrates in the skin. Formalin-fixed tissue samples from 26 patients with CBCL and 23 with benign lymphoid infiltrates were analyzed for Ig clonality using standardized BIOMED-2 polymerase chain reaction protocols. The (14;18) translocation was also assessed. A clone was detected in 22 (85%) of the 26 patients with CBCL [12/15 (80%) marginal zone B-cell lymphoma; 10/11 (91%) follicle center lymphoma] and in 1 (4%) of the 23 patients with benign infiltrates. The (14;18) translocation was present in 3 (12%) of the 26 patients with CBCL [1/15 (7%) marginal zone B-cell lymphoma; 2/11 (18%) follicle center lymphoma]. Our preliminary data indicate that Ig clonality can be detected in formalin-fixed samples of CBCL with meaningful sensitivity (85%) and high specificity (96%) using the BIOMED-2 method. This study forms the basis for further investigating the role of Ig clonality in distinguishing CBCL from benign lymphoid infiltrates that may pose a challenge in morphologic diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.