Background In October 2010, Haiti was struck by a large-scale cholera epidemic. The Haitian government, UNICEF and other international partners launched an unprecedented nationwide alert-response strategy in July 2013. Coordinated NGOs recruited local rapid response mobile teams to conduct case-area targeted interventions (CATIs), including education sessions, household decontamination by chlorine spraying, and distribution of chlorine tablets. An innovative red - orange - green alert system was also established to monitor the epidemic at the communal scale on a weekly basis. Our study aimed to describe and evaluate the exhaustiveness, intensity and quality of the CATIs in response to cholera alerts in Haiti between July 2013 and June 2017. Methodology/principal findings We analyzed the response to 7,856 weekly cholera alerts using routine surveillance data and severity criteria, which was based on the details of 31,306 notified CATIs. The odds of CATI response during the same week (exhaustiveness) and the number of complete CATIs in responded alerts (intensity and quality) were estimated using multivariate generalized linear mixed models and several covariates. CATIs were carried out significantly more often in response to red alerts (adjusted odds ratio (aOR) [95%-confidence interval, 95%-CI], 2.52 [2.22–2.87]) compared with orange alerts. Significantly more complete CATIs were carried out in response to red alerts compared with orange alerts (adjusted incidence ratio (aIR), 1.85 [1.73–1.99]). Over the course of the eight-semester study, we observed a significant improvement in the exhaustiveness (aOR, 1.43 [1.38–1.48] per semester) as well as the intensity and quality (aIR, 1.23 [1.2–1.25] per semester) of CATI responses, independently of funds available for the strategy. The odds of launching a CATI response significantly decreased with increased rainfall (aOR, 0.99 [0.97–1] per each accumulated cm). Response interventions were significantly heterogeneous between NGOs, communes and departments. Conclusions/significance The implementation of a nationwide case-area targeted rapid response strategy to control cholera in Haiti was feasible albeit with certain obstacles. Such feedback from the field and ongoing impact studies will be very informative for actors and international donors involved in cholera control and elimination in Haiti and in other affected countries.
This study tests the hypothesis that exterior sources of lead dust are more important than interior sources in the route of exposure of children. Benign field methods were used to distinguish between potential and actual lead exposure problems. Utilising hand wipe and surface wipe techniques, hand and environmental samples were obtained from selected day care centres at different locations within New Orleans. Previous research has shown that soil lead is determined by location within the city. Private and public day care centres were selected from inner and outer city areas to estimate the extent of hand lead exposure. To measure and identify the extent of environmental lead exposure, hand wipes were taken before and after playing outdoors. Results of preliminary findings show that outdoor lead dust is a more potent contaminant of hands than indoor lead dust. An association was found between the amount of lead on children's hands after playing outdoors and the lead content in the exterior dust and soil. Although two girls out of forty children had exceptionally high hand lead quantities after playing outdoors, in general, boys have higher hand lead levels than girls. The private inner-city day care centre had a severe contamination problem in its outdoor play area. By contrast, the outdoor play area of the public inner city day care centre is of such a high quality that the quantity of lead dust is independent of location in the city.
Abstract.Matthew, a category 4 hurricane, struck Haiti on October 4, 2016, causing widespread flooding and damage to buildings and crops, and resulted in many deaths. The damage caused by Matthew raised concerns of increased cholera transmission particularly in Sud and Grand’Anse departments, regions which were hit most heavily by the storm. To evaluate the change in reported cholera cases following Hurricane Matthew on reported cholera cases, we used interrupted time series regression models of daily reported cholera cases, controlling for the impact of both rainfall, following a 4-week lag, and seasonality, from 2013 through 2016. Our results indicate a significant increase in reported cholera cases after Matthew, suggesting that the storm resulted in an immediate surge in suspect cases, and a decline in reported cholera cases in the 46-day post-storm period, after controlling for rainfall and seasonality. Regression models stratified by the department indicate that the impact of the hurricane was regional, with larger surges in the two most highly storm-affected departments: Sud and Grand’Anse. These models were able to provide input to the Ministry of Health in Haiti on the national and regional impact of Hurricane Matthew and, with further development, could provide the flexibility of use in other emergency situations. This article highlights the need for continued cholera prevention and control efforts, particularly in the wake of natural disasters such as hurricanes, and the continued need for intensive cholera surveillance nationally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.