In the Baltic Sea, the climate change is expected to reduce salinity and increase temperature, and shift mesozooplankton communities towards dominance of small-bodied brackish-water taxa and cause a decline in large-bodied marine taxa. In this article, we analyse environmental monitoring data, collected in a coastal area in the northern Baltic Archipelago Sea during May-September, over the period of 1967-2013, for trends and relationship between mesozooplankton biomass anomalies, salinity and temperature. During the study period, the surface water temperature increased and salinity decreased. Since the mid-1980s, the community was dominated by small-bodied brackish-water taxa, whereas largebodied calanoid copepods and marine taxa were mostly scarce or absent from the samples. The observed decline of marine taxa was related to the decline in salinity and, to some extent, to the increase of temperature. The brackish-water taxa were, for the most part, positively influenced by the temperature increase, although possibly other direct or indirect factors, not considered in this study, were also influencing the dynamics. This study adds to the existing knowledge of a possible ongoing shift in the food web structure towards smaller-sized species and emphasizes the significance of long-term environmental monitoring in understanding the dynamics in plankton communities.
Global climate change can affect the energy content of fish by altering their lipid physiology and consumption. We investigated the effects of different environmental stressors on the lipid content of the Baltic herring (Clupea harengus membras) from spawning ground samples that were collected annually in the northern Baltic Sea. During 1987–2014, the average lipid content of herring muscle decreased from 5%–6% (wet mass) to 1.5% (wet mass). Generalized linear mixed models indicated that sea water salinity and the size of the herring stock explained best the declining trend of lipid content. We estimated that the amount of the lipid storage incorporated in the spawning stock decreased by approximately 45% during the study, with respective energy content decreases. Fatty acid composition analysis revealed that herring lipids contained a high proportion of EPA (eicosapentaenoic acid; 20:5n-3) and DHA (docosahexaenoic acid; 22:6n-3), which likely originated from its main summertime prey, Limnocalanus macrurus. The results illustrate various climate change-induced processes leading to changes in the lipid content of the Baltic herring and, consequently, to changes in the energy flows of the northern Baltic ecosystem.
The lipid reserves and occurrence of the cold-stenothermic, omnivorous copepod Limnocalanus macrurus were studied in the Bothnian Sea (northern Baltic Sea) during spring and summer 2013-2014 with a special emphasis on the fatty acid composition of adults and their potential food. The individual total wax ester (WE) content, determined from the size of oil sacs in the prosoma, ranged on average from 1.3 to 2.6 µg, and showed a decreasing trend towards September. Lipids were dominated by fatty acids 16:0, 18:1(n-9), 18:2(n-6), 20:5(n-3) and 22:6(n-6), forming 56-61% of total fatty acids in June-September. Decreasing abundance of adults and reduction of the lipid storage implied that during summer adults suffered from starvation and, as a result, became eliminated from the population. The lipid content and dietary fatty acid markers suggested that in May, adult L. macrurus utilized the phytoplankton bloom, consisting mainly of diatoms and dinoflagellates, but later, during July-September, consumed either algae or heterotrophic organisms sinking from upper water layers or crustaceans inhabiting the same deeper water layers as L. macrurus. In the face of the climate change, the rising temperatures may force L. macrurus permanently to deeper water levels. If also the food resources are limited, we conclude that the summer season may act as a bottleneck limiting the propagation of L. macrurus and having implications further along the food web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.