Due to the growing awareness of Punica granatum fruit’s health-promoting properties, the pomegranate is increasingly used for food purposes. This results in the formation of biological waste products such as peels. A biowaste circular bioeconomy strategy holds great prospective for a sustainable economy. Therefore, a sustainable and environmentally friendly way of disposing of waste (e.g., use of biowaste to obtain high-value components (e.g., punicalagins, enzymes)) is crucial for the protection of the environment and human health. In the presented study, the content of total phenols and proanthocyanidins in ten samples of Punica granatum fruit (juice, aqueous (H2O) and ethanolic (EtOH) extracts of peels and seeds) was determined. Peel extracts were found to be the richest in the content of secondary metabolites and showed extremely high antioxidant potential (approximately 90% inhibition: DPPH radical scavenging activity). To the best of our knowledge, this is the first comparative study to determine the enzymatic activity of α-amylase, lipase, peroxidase, protease, and transglutaminase in different P. granatum samples. Furthermore, the antibacterial efficacy of all P. granatum samples was qualitatively determined against three strains of Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens) and three strains of Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus pyogenes) bacteria, susceptible to gaining antibiotic resistance. Moreover, the most promising peel extracts were quantified for antibacterial efficacy against tested bacteria at five different concentrations. All samples slowed down and inhibited the growth of all tested bacteria. MIC90 values (2.7 or 0.3 mg/mL) were determined in 18 out of 24 experiments (four samples, six bacteria tested). There is no research in the reviewed literature that is current with such detailed and comprehensive determination of P. granatum peel extracts antibacterial activity. The results of the research showed great potential for the use of P. granatum in the field of antibacterial activity in biomedicine applications and in the cosmetic, food, and pharmaceutical industries.
As the need for non-renewable sources such as fossil fuels has increased during the last few decades, the search for sustainable and renewable alternative sources has gained growing interest. Enzymatic hydrolysis in bioethanol production presents an important step, where sugars that are fermented are obtained in the final fermentation process. In the process of enzymatic hydrolysis, more and more new effective enzymes are being researched to ensure a more cost-effective process. There are many different enzyme strategies implemented in hydrolysis protocols, where different lignocellulosic biomass, such as wood feedstocks, different agricultural wastes, and marine algae are being used as substrates for an efficient bioethanol production. This review investigates the very recent enzymatic hydrolysis pathways in bioethanol production from lignocellulosic biomass.
The development of solid acid catalysts, especially based on metal oxides and different magnetic nanoparticles, gained much awareness recently as a result of the development of different nano-based materials. Solid acid catalysts based on metal oxides are promising for the (trans)esterification reactions of different oils and waste materials for biodiesel production. This review gives a brief overview of recent developments in various solid acid catalysts based on different metal oxides, such as zirconia, zinc, titanium, iron, tungsten, and magnetic materials, where the catalysts are optimized for various reaction parameters, such as the amount of catalyst, molar ratio of oil to alcohol, reaction time, and temperature. Furthermore, yields and conversions for biodiesel production are compared. Such metal-oxide-based solid acid catalysts provide more sustainable, green, and easy-separation synthesis routes with high catalytic activity and reusability than traditionally used catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.