Social interactions between individuals living in a group can have both positive and negative effects on welfare, productivity, and health of these individuals. Negative effects of social interactions in livestock are easier to observe than positive effects. For example, laying hens may develop feather pecking, which can cause mortality due to cannibalism, and pigs may develop tail biting or excessive aggression. Several studies have shown that social interactions affect the genetic variation in a trait. Genetic improvement of socially-affected traits, however, has proven to be difficult until relatively recently. The use of classical selection methods, like individual selection, may result in selection responses opposite to expected, because these methods neglect the effect of an individual on its group mates (social genetic effects). It has become clear that improvement of socially-affected traits requires selection methods that take into account not only the direct effect of an individual on its own phenotype but also the social genetic effects, also known as indirect genetic effects, of an individual on the phenotypes of its group mates. Here, we review the theoretical and empirical work on social genetic effects, with a focus on livestock. First, we present the theory of social genetic effects. Subsequently, we evaluate the evidence for social genetic effects in livestock and other species, by reviewing estimates of genetic parameters for direct and social genetic effects. Then we describe the results of different selection experiments. Finally, we discuss issues concerning the implementation of social genetic effects in livestock breeding programs. This review demonstrates that selection for socially-affected traits, using methods that target both the direct and social genetic effects, is a promising, but sometimes difficult to use in practice, tool to simultaneously improve production and welfare in livestock.
Through social interactions, individuals can affect one another's phenotype. The heritable effect of an individual on the phenotype of a conspecific is known as an indirect genetic effect (IGE). Although IGEs can have a substantial impact on heritable variation and response to selection, little is known about the genetic architecture of traits affected by IGEs. We studied IGEs for survival in domestic chickens (Gallus gallus), using data on two purebred lines and their reciprocal cross. Birds were kept in groups of four. Feather pecking and cannibalism caused mortality, as beaks were kept intact. Survival time was shorter in crossbreds than in purebreds, indicating outbreeding depression and the presence of nonadditive genetic effects. IGEs contributed the majority of heritable variation in crossbreds (87 and 72%) and around half of heritable variation in purebreds (65 and 44%). There was no evidence of dominance variance, neither direct nor indirect. Absence of dominance variance in combination with considerable outbreeding depression suggests that survival is affected by many loci. Direct-indirect genetic correlations were moderately to highly negative in crossbreds (20.37 6 0.17 and 20.83 6 0.10), but low and not significantly different from zero in purebreds (0.20 6 0.21 and 20.28 6 0.18). Consequently, unlike purebreds, crossbreds would fail to respond positively to mass selection. The direct genetic correlation between both crosses was high (0.95 6 0.23), whereas the indirect genetic correlation was moderate (0.41 6 0.26). Thus, for IGEs, it mattered which parental line provided the sire and which provided the dam. This indirect parent-of-origin effect appeared to be paternally transmitted and is probably Z chromosome linked.
BackgroundDeleterious genetic variation can increase in frequency as a result of mutations, genetic drift, and genetic hitchhiking. Although individual effects are often small, the cumulative effect of deleterious genetic variation can impact population fitness substantially. In this study, we examined the genome of commercial purebred chicken lines for deleterious and functional variations, combining genotype and whole-genome sequence data.ResultsWe analysed over 22,000 animals that were genotyped on a 60 K SNP chip from four purebred lines (two white egg and two brown egg layer lines) and two crossbred lines. We identified 79 haplotypes that showed a significant deficit in homozygous carriers. This deficit was assumed to stem from haplotypes that potentially harbour lethal recessive variations. To identify potentially deleterious mutations, a catalogue of over 10 million variants was derived from 250 whole-genome sequenced animals from three purebred white-egg layer lines. Out of 4219 putative deleterious variants, 152 mutations were identified that likely induce embryonic lethality in the homozygous state. Inferred deleterious variation showed evidence of purifying selection and deleterious alleles were generally overrepresented in regions of low recombination. Finally, we found evidence that mutations, which were inferred to be evolutionally intolerant, likely have positive effects in commercial chicken populations.ConclusionsWe present a comprehensive genomic perspective on deleterious and functional genetic variation in egg layer breeding lines, which are under intensive selection and characterized by a small effective population size. We show that deleterious variation is subject to purifying selection and that there is a positive relationship between recombination rate and purging efficiency. In addition, multiple putative functional coding variants were discovered in selective sweep regions, which are likely under positive selection. Together, this study provides a unique molecular perspective on functional and deleterious variation in commercial egg-laying chickens, which can enhance current genomic breeding practices to lower the frequency of undesirable variants in the population.Electronic supplementary materialThe online version of this article (10.1186/s12711-018-0390-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.