Traditional methods for the determination of meat quality-relevant parameters are rather time-consuming and destructive, whereas spectroscopic methods offer fast and non-invasive measurements. This review critically deals with the application of handheld and portable Raman devices in the meat sector. Some published articles on this topic tend to convey the impression of unrestricted applicability of mentioned devices in this field of research. Furthermore, results are often subjected to over-optimistic interpretations without being underpinned by adequate test set validation. On the other hand, deviations in reference methods for meat quality assessment and the inhomogeneity of the meat matrix pose a challange to Raman spectroscopy and multivariate models. Nonetheless, handheld and portable Raman devices show considerable potential for some applications in the meat sector.
Hemp and hemp seed press cake—a by-product of hemp oil production—are high-protein, gluten-free raw materials that are often used to enhance the nutritional value of breads. The addition of hemp materials, however, often negatively impacts the technological parameters of breads. Consequently, this study investigated whether and how much the addition of various by-products of hemp seed press cakes to wheat bread mixtures adversely affects the texture and colour profile. The texture profile and colour were determined using a texture analyser and tristimulus measurements. The particle size of raw materials was also measured. Principal component analysis was then used to visualise the correlation between all measured values as well as nutritional parameters. The results showed that the addition of only 1% of some hemp raw materials caused significant technological changes (p > 0.05). Hemp raw materials increased bread hardness and decreased elasticity. The colour of breads containing 1% hemp was also visibly darker than the reference bread. The addition of more hemp led to further darkening and the deterioration of the technological parameters of the products. Consequently, while various hemp materials have high nutritional value, a balance with sensory properties, e.g., textural and colour, has to be reached.
The packaging of fresh meat has been studied for decades, leading to improved packaging types and conditions such as modified atmosphere packaging (MAP). While commonly used meat packaging uses fossil fuel-based materials, the use of biodegradable packaging materials for this application has not been studied widely. This study aimed at evaluating the sustainability of biodegradable packaging materials compared to established conventional packaging materials through analyses of the quality of freshly packaged pork. The quality was assessed by evaluating sensory aspects, meat color and microbiological attributes of the pork products. The results show no significant differences (p > 0.05) in ground pork and pork loin stored in biodegradable MAP (BioMAP) and conventional MAP for the evaluated sensory attributes, meat color or total bacterial count (TBC) over extended storage times. The data suggest that BioMAP could be a viable alternative to MAP using conventional, fossil fuel-based materials for the storage of fresh meats, while simultaneously fulfilling the customers’ wishes for a more environmentally friendly packaging alternative.
Due to globally increasing problems concerning biodeterioration of paints, it is worthwhile to enhance the determination of colony forming units (CFU) as a gold standard method via more rapid and culture-independent techniques. Here, we combined traditional culture-dependent techniques with subsequent sequencing, quantitative qPCR, and a serial quantification method (most probable number; MPN) to detect paint degrading bacteria in general and sulfate-reducing bacteria (SRB) in particular. During our investigation of three water-based paints that showed visible contamination, we found high bacterial counts of up to 107 CFU mL−1. Subsequent sequencing allowed the identification of common paint degraders including Bacillus sp. and Pseudomonas sp., but less frequently detected bacteria such as Rhodococcus sp. and Delftia spp. were also found to be present. MPN, as well as dsrA-targeted qPCR to detect SRB, only showed positive results for two out of three samples. These results coincided with the inherent physicochemical properties of the paints offering suitable conditions for microbial growth or not. The MPN method can be used for a diversity of aerobic and anaerobic bacteria and is rapid and reproducible. A combination of culture-independent techniques such as qPCR or NGS can help to fully elucidate the bacterial diversity in spoiled paint by also recovering anaerobic and unculturable ones.
The demand for natural cosmetics has steadily increased in recent years. However, challenges occur especially in quality preservation regarding oxidative spoilage of natural cosmetic products, as the use of synthetic preservatives and antioxidants is limited. Therefore, it is important to find nature-based ingredients to ensure shelf life in natural cosmetic formulations. As a result, potential is seen in the use of plant-based antioxidant extracts. The aim of this work was to determine the suitability of the method combination by measuring the antioxidant activity, oxygen concentration, and volatile oxidation products via gas chromatography (hexanal) for the characterization of the influence of some plant extracts on the oxidative stability of natural cosmetic emulsions. Plant extracts of Riesling (Vitis vinifera) pomace, apple (Malus domestica) pomace, coffee (Coffea arabica) grounds, cocoa (Theobroma cacao) husk, and coffee (Coffea arabica) powder extract were incorporated in stable O/W emulsion formulations, while an emulsion without extract functioned as blank. Afterwards, the emulsions were subjected to 3-month accelerated storage tests with and without light exposure. Their oxygen uptake was investigated, and headspace gas chromatography measurements were performed to detect the fatty acid oxidation products formed during oxidative processes in the samples. The results showed that all emulsion samples under light exposure had a higher oxygen uptake and an increase in the characteristic fatty acid oxidation products compared with those stored under light exclusion. However, differences in oxygen uptake under light exposure were observed depending on the plant extract. Therefore, for O/W emulsions, the daily oxygen consumption rate correlated exponentially with the antioxidant activity, and the hexanal concentration correlated linearly with the daily oxygen consumption rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.