In chemical kinetics research, kinetic models containing hundreds of species and tens of thousands of elementary reactions are commonly used to understand and predict the behavior of reactive chemical systems. Reaction Mechanism Generator (RMG) is a software suite developed to automatically generate such models by incorporating and extrapolating from a database of known thermochemical and kinetic parameters.Here, we present the recent version 3 release of RMG and highlight improvements since the previously published description of RMG v1.0. One important change is that RMG v3.0 is now Python 3 compatible, which supports the most up-to-date versions of cheminformatics and machine learning packages that RMG depends on. Additionally, RMG can now generate heterogeneous catalysis models, in addition to the previously available gas-and liquid-phase capabilities. For model analysis, new methods for local and global uncertainty analysis have been implemented to supplement first-order sensitivity analysis. The RMG database of thermochemical and kinetic parameters has been significantly expanded to cover more types of chemistry. The present release also includes parallelization for reaction generation and on-the-fly quantum calculations, and a new molecule isomorphism approach to improve computational performance. Overall, RMG v3.0 includes many changes which improve the accuracy of the generated chemical mechanisms and allow for exploration of a wider range of chemical systems.
The automatic microkinetic mechanism generator for heterogeneous catalysis, RMG-Cat, has been extensively updated. Density functional theory calculations were performed for 69 adsorbates on Pt(111), and the resulting thermodynamic properties were added to RMG-Cat. The thermo database is significantly more accurate; it includes nitrogen-containing adsorbates for the first time as well as better capabilities for predicting the thermochemistry of novel adsorbates. Additionally, RMG-Cat can now simultaneously pursue a mechanism expansion both on the surface and in the gas phase. This heterogeneous/homogeneously coupled capability is tested on the catalytic combustion of methane on platinum. The results confirm that under some conditions the catalyst is capable of inducing thermal ignition in the gas phase.
Automatic mechanism generation is used to determine mechanisms for the CO 2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO 2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO 2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.