Modifications like asparagine deamidation, aspartate isomerization, methionine oxidation, and lysine glycation are typical degradations for recombinant antibodies. For the identification and functional evaluation of antibody critical quality attributes (CQAs) derived from chemical modifications in the complementary-determining regions (CDRs) and the conserved regions, an approach employing specific stress conditions, elevated temperatures, pH, oxidizing agents, and forced glycation with glucose incubation, was applied. The application of the specific stress conditions combined with ion exchange chromatography, proteolytic peptide mapping, quantitative liquid chromatography mass spectrometry, and functional evaluation by surface plasmon resonance analysis was adequate to identify and functionally assess chemical modification sites in the CDRs of a recombinant IgG1. LC-Met-4, LC-Asn-30/31, LC-Asn-92, HC-Met-100c, and HC Lys-33 were identified as potential CQAs. However, none of the assessed degradation products led to a complete loss of functionality if only one light or heavy chain of the native antibody was affected.
The degradation of proteins by asparagine deamidation and aspartate isomerization is one of several chemical degradation pathways for recombinant antibodies. In this study, we have identified two solvent accessible degradation sites (light chain aspartate-56 and heavy chain aspartate-99/101) in the complementary-determining regions of a recombinant IgG1 antibody susceptible to isomerization under elevated temperature conditions. For both hot-spots, the degree of isomerization was found to be significantly higher than the deamidation of asparagine-(387, 392, 393) in the conserved CH3 region, which has been identified as being solvent accessible and sensitive to chemical degradation in previous studies. In order to reduce the time for simultaneous identification and functional evaluation of potential asparagine deamidation and aspartate isomerization sites, a test system employing accelerated temperature conditions and proteolytic peptide mapping combined with quantitative UPLC-MS was developed. This method occupies the formulation buffer system histidine/HCl (20 mM; pH 6.0) for denaturation/reduction/digestion and eliminates the alkylation step. The achieved degree of asparagine deamidation and aspartate isomerization was adequate to identify the functional consequence by binding studies. In summary, the here presented approach greatly facilitates the evaluation of fermentation, purification, formulation, and storage conditions on antibody asparagine deamidation and aspartate isomerization by monitoring susceptible marker peptides located in the complementary-determining regions of recombinant antibodies.
The quality control testing of chemical degradations in the bio-pharmaceutical industry is currently under controversial debate. Here we have systematically applied in vitro and in vivo stress conditions to investigate the influence of protein degradation on structure-function. Extensive purification and characterization enabled identification and functional assessment of the physiological degradation of chemical modification sites in the variable complementarity-determining regions (CDRs) and conserved region of trastuzumab. We demonstrate that the degradation of the solvent-accessible residues located in the CDR and the conserved fragment crystallizable region (Fc) occurs faster in vivo (within days) compared to the levels observed for bio-process and real-time storage conditions. These results hence question the rationality of extreme monitoring of low level alterations in such chemical modifications as critical patient safety parameters in product quality control testing, given that these modifications merely mirror the natural/physiological aging process of endogenous antibodies.
(2015) Functional assessment of antibody oxidation by native mass spectrometry, mAbs, 7:5, 891-900, DOI: 10.1080DOI: 10. /19420862.2015 To link to this article: https://doi.org/10. 1080/19420862.2015 Oxidation of methionine (Met) residues is one of several chemical degradation pathways for recombinant IgG1 antibodies. Studies using several methodologies have indicated that Met oxidation in the constant IgG1 domains affects in vitro interaction with human neonatal Fc (huFcRn) receptor, which is important for antibody half-life. Here, a completely new approach to investigating the effect of oxidative stress conditions has been applied. Quantitative ultraperformance liquid chromatography mass spectrometry (MS) peptide mapping, classical surface plasmon resonance and the recently developed FcRn column chromatography were combined with the new fast-growing approach of native MS as a near native state protein complex analysis in solution. Optimized mass spectrometric voltage and pressure conditions were applied to stabilize antibody/huFcRn receptor complexes in the gas phase for subsequent native MS experiments with oxidized IgG1 material. This approach demonstrated a linear correlation between quantitative native MS and IgG-FcRn functional analysis.In our study, oxidation of the heavy chain Met-265 resulted in a stepwise reduction of mAb3/huFcRn receptor complex formation. Remarkably, a quantitative effect of the heavy chain Met-265 oxidation on relative binding capacity was only detected for doubly oxidized IgG1, whereas IgG1 with only one oxidized heavy chain Met-265 was not found to significantly affect IgG1 binding to huFcRn. Thus, mono-oxidized IgG1 heavy chain Met-265 most likely does not represent a critical quality attribute for pharmacokinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.