There is an increasing awareness of the risks and dangers of exposure to radiation associated with repeated radiographic assessment of spinal curvature and spinal movements. As such, attempts are continuously being made to develop skinsurface devices for use in examining the progression and response to treatment of various spinal disorders. However, the reliability and validity of measurements recorded with such devices must be established before they can be recommended for use in the research or clinical environment. The aim of this study was to examine the reliability of measurements using a newly developed skin-surface device, the Spinal Mouse. Twenty healthy volunteers (mean age 41±12 years, nine males, 11 females) took part. On 2 separate days, spinal curvature was measured with the Spinal Mouse during standing, full flexion, and full extension (each three times by each of two examiners). Paired t-tests, intraclass correlation coefficients (ICC), and standard errors of measurement (SEM) with 95% confidence intervals were used to characterise between-day and interexaminer reliability for: standing sacral angle, lumbar lordosis, thoracic kyphosis, and ranges of motion (flexion, extension) of the thoracic spine, lumbar spine, hips, and trunk. The between-day reliability for segmental ranges of flexion was also determined for each motion segment from T1-2 to L5-S1. The majority of parameters measured for the 'global regions' (thoracic, lumbar, or hips) showed good between-day reliability. Depending on the parameter of interest, between-day ICCs ranged from 0.67 to 0.92 for examiner 1 (average 0.82) and 0.57 to 0.95 for examiner 2 (average 0.83); for 70% of the parameters measured, the ICCs were greater than 0.8 and generally highest for the lumbar spine and whole trunk measures. For lumbar spine range of flexion, the SEM was approximately 3°. The ICCs were also good for the interexaminer comparisons, ranging from 0.62 to 0.93 on day 1 (average 0.81) and 0.70 to 0.94 on day 2 (average 0.86), although small systematic differences were sometimes observed in their mean values. The latter were still evident even if both examiners used the same skin markings. For segmental ranges of flexion, the ICCs varied between vertebral levels but overall were lower than for the global measures (average for all levels in all analyses, ICC 0.6). For each examiner, the average between-day SEM over all vertebral levels was approximately 2°. For 'global' regions of the spine, the Spinal Mouse delivered consistently reliable values for standing curvatures and ranges of motion which compared well with those reported in the literature. This suggests that the device can be reliably implemented for in vivo studies of the ORIGINAL ARTICLE Eur Spine J (2004) 13 : 122-136 DOI 10.1007 Anne F. Mannion Katrin Knecht Gordana Balaban Jiri Dvorak Dieter Grob A new skin-surface device for measuring the curvature and global and segmental ranges of motion of the spine: reliability of measurements and comparison with data reviewed from the ...
Nematode (Heterodera schachtii) resistance in sugar beet (Beta vulgaris) is controlled by a single dominant resistance gene, Hs1(pro-1). BvGLP-1 was cloned from resistant sugar beet. The BvGLP-1 messenger (m)RNA is highly upregulated in the resistant plants after nematode infection, suggesting its role in the Hs1(pro-1) mediated resistance. BvGLP-1 exhibits sequence homology to a set of plant germin-like proteins (GLP), from which several have proved to be functional in plant basal or defense resistance against fungal pathogens. To test whether BvGLP-1 is also involved in the plant-fungus interaction, we transferred BvGLP-1 into Arabidopsis and challenged the transgenic plants with the pathogenic fungi Verticillium longisporum and Rhizoctonia solani as well as with the beneficial endophytic fungus Piriformospora indica. The expression of BvGLP-1 in Arabidopsis elevated the H(2)O(2) content and conferred significant resistance to V. longisporum and R. solani but did not affect the beneficial interaction with P. indica in seedlings. Microscopic observations revealed a dramatic reduction in the amount of hyphae of the pathogenic fungi on the root surface as well as of fungal mycelium developed inside the roots of transgenic Arabidopsis compared with wild-type plants. Molecular analysis demonstrated that the BvGLP-1 expression in Arabidopsis constitutively activates the expression of a subset of plant defense-related proteins such as PR-1 to PR-4 and PDF1.2 but not PDF2.1 and PDF2.3. In contrast, the PDF2.1 mRNA level was downregulated. These data suggest an important role of BvGLP-1 in establishment of plant defense responses, which follow specific signaling routes that diverge from those induced by the beneficial fungus.
The cyst nematode Heterodera schachtii belongs to the most important biotic stress factors in sugar beet cultivation. Nematodes can be controlled by crop rotation, by fumigation with nematicides or by growing resistant crops. However, nematicides are no longer admitted to be used because of their toxic environmental impacts, the crop rotation system is often agronomically impracticable and the genetic resistance is so far not available in sugar beet germplasms. Thus, alternative strategies for nematode control have been applied in the past years. For instance, genetic resistance from wild beet species were identified and transferred into the elite breeding materials. Today several nematode tolerant varieties of sugar beet are commercially available. In addition, different approaches based on genetic engineering have been developed to improve plant nematode resistance. Nevertheless, an effective control of nematodes in sugar beet cultivation still remains a great challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.