An investigation of the photoinduced fluorescence enhancement (PFE) behavior of CdSe/ZnS core/shell quantum dots deposited at low densities, under anhydrous and controlled water humidity, under oxygen or argon, is presented. The photoluminescence properties of CdSe/ZnS QDs are highly dependent upon the local gaseous environment. Under anhydrous conditions, under either oxygen or argon, there was no observed PFE, even though there were remarkable differences in the photoluminescence spectra. Under argon, (i) the initial photoluminescence properties are independent of humidity level; however, (ii) the PFE effect observed is highly dependent on the environmental humidity levels. Under oxygen, (i) the initial photoluminescence properties (spectra and yield) are dependent on humidity levels and (ii) the PFE effect observed is highly dependent on the humidity levels. Comparing D 2 O versus H 2 O humidity level effects on the photoluminescence properties of CdSe/ZnS QDs provides evidence for a water-molecule-stabilized state that facilitates luminescence processes. The products of CdSe/ZnS QDs exposed under a humid oxygen environment were evaluated by X-ray photoelectron spectroscopy. Oxidation of both the CdSe core and the ZnS shell was established. Oxidation of the ZnS shell is suggested to be a result of reaction with peroxide products resulting from the oxygen radical anion. These results highlight the important sensitivity of QDs to water and prove the existence of competing electronic and chemical effects on different time scales.
Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering) at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.