Inhibition of the small GTPase ras homology protein (Rho) or its downstream target, the Rho-associated kinase (ROCK), has been shown to promote axon regeneration and to improve functional recovery following spinal cord injury (SCI) in the adult rat. Here, we have analyzed the expression of RhoA and RhoB following spinal cord injury in order to assess whether Rho is a possible target for late pharmacological intervention. In control spinal cords, RhoA(+) cells were almost absent, whereas RhoB was localized to some ependymal cells, a few microglia, and some dissociated neurons. In injured spinal cords, RhoA(+) and RhoB(+)cells accumulated at perilesional areas and in the developing necrotic core early after injury at day 1. After reaching their maximum levels (RhoA at day 3; RhoB at day 1), RhoA(+) and RhoB(+) cell numbers remained significantly elevated until day 28. In areas remote from the lesion (> or =0.75 mm), a more discrete accumulation of RhoA(+) and RhoB(+) cells was observed, primarily in areas of ongoing Wallerian degeneration. RhoA and RhoB were predominantly expressed by polymorphonuclear granulocytes, ED1(+) microglia/macrophages, oligodendrocytes, some neurons, and swollen axons/neurites. Furthermore, expression was located to lesional, reactive astrocytes and fibroblastoid cells confined to areas of scar formation. Our experiments have determined that most RhoA(+) and RhoB(+) cells (>70%) are of mononuclear origin. The persistent presence of lesional RhoA(+) and RhoB(+) axon/neurite fibers over a period of 4 weeks after injury suggests that Rho inhibition is a putative therapeutic concept also for delayed intervention after SCI.
Microglial EAAT1 expression is restricted to the early/intermediate stage of activation and blood-derived (perivascular) monocytes do not contribute to EAAT1+ cells following ischaemia. Whether a pharmacological increase in glial EAAT expression may compensate for loss of cortical EAAT expression and reduce neuronal damage following stroke requires investigation by further functional studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.