Poor quality (eg. excessive scarring) or delayed closure of skin wounds can have profound physical and pyschosocial effects on patients as well as pose an enormous economic burden on the healthcare system. An effective means of improving both the rate and quality of wound healing is needed for all patients suffering from skin injury. Despite wound care being a multi-billion-dollar industry, effective treatments aimed at rapidly restoring the skin barrier function or mitigating the severity of fibrotic scar remain elusive. Previously, a hydrogel conjugated angiopoietin-1 derived peptide (QHREDGS; Q-peptide) was shown to increase keratinocyte migration and improve wound healing in diabetic mice. Here, we evaluated the effect of this Q-Peptide Hydrogel on human skin wound healing using a mouse xenograft model. First, we confirmed that the Q-Peptide Hydrogel promoted the migration of adult human keratinocytes and modulated their cytokine profile in vitro. Next, utilizing our human to mouse split-thickness skin xenograft model, we found improved healing of wounded human epidermis following Q-Peptide Hydrogel treatment. Importantly, Q-Peptide Hydrogel treatment enhanced this wound re-epithelialization via increased keratinocyte migration and survival, rather than a sustained increase in proliferation. Overall, these data provide strong evidence that topical application of QHREDGS peptide-modified hydrogels results in accelerated wound closure that may lead to improved outcomes for patients.
A sound understanding of developmental biology is part of the foundation of effective stem cell‐derived tissue engineering. Here, the key concepts of cardiac development that are successfully applied in a bioinspired approach to growing engineered cardiac tissues, are reviewed. The native cardiac milieu is studied extensively from embryonic to adult phenotypes, as it provides a resource of factors, mechanisms, and protocols to consider when working toward establishing living tissues in vitro. It begins with the various cell types that constitute the cardiac tissue. It is discussed how myocytes interact with other cell types and their microenvironment and how they change over time from the embryonic to the adult states, with a view on how such changes affect the tissue function and may be used in engineered tissue models. Key embryonic signaling pathways that have been leveraged in the design of culture media and differentiation protocols are presented. The cellular microenvironment, from extracellular matrix chemical and physical properties, to the dynamic mechanical and electrical forces that are exerted on tissues is explored. It is shown that how such microenvironmental factors can inform the design of biomaterials, scaffolds, stimulation bioreactors, and maturation readouts, and suggest considerations for ongoing biomimetic advancement of engineered cardiac tissues and regeneration strategies for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.