Graphical Abstract Highlights d Positive force frequency and post-rest potentiation are achieved in human tissues d Engineered atrial and ventricular tissues have distinct electrophysiology and drug responses d Atrio-ventricular tissues show spatially confined drug responses d Long-term electrical conditioning enables polygenic cardiac disease modeling SUMMARYTissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca 2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.
Myocardial
fibrosis is a severe global health problem due to its
prevalence in all forms of cardiac diseases and direct role in causing
heart failure. The discovery of efficient antifibrotic compounds has
been hampered due to the lack of a physiologically relevant disease
model. Herein, we present a disease model of human myocardial fibrosis
and use it to establish a compound screening system. In the Biowire
II platform, cardiac tissues are suspended between a pair of poly(octamethylene
maleate (anhydride) citrate) (POMaC) wires. Noninvasive functional
readouts are realized on the basis of the deflection of the intrinsically
fluorescent polymer. The disease model is constructed to recapitulate
contractile, biomechanical, and electrophysiological complexities
of fibrotic myocardium. Additionally, we constructed a heteropolar
integrated model with fibrotic and healthy cardiac tissues coupled
together. The integrated model captures the regional heterogeneity
of scar lesion, border zone, and adjacent healthy myocardium. Finally,
we demonstrate the utility of the system for the evaluation of antifibrotic
compounds. The high-fidelity
in vitro
model system
combined with convenient functional readouts could potentially facilitate
the development of precision medicine strategies for cardiac fibrosis
modeling and establish a pipeline for preclinical compound screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.