Graphical Abstract Highlights d Positive force frequency and post-rest potentiation are achieved in human tissues d Engineered atrial and ventricular tissues have distinct electrophysiology and drug responses d Atrio-ventricular tissues show spatially confined drug responses d Long-term electrical conditioning enables polygenic cardiac disease modeling SUMMARYTissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca 2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.
SUMMARY Macrophage apoptosis in advanced atheromata, a key process in plaque necrosis, involves the combination of ER stress with other pro-apoptotic stimuli. We show here that oxidized phospholipids, oxidized LDL, saturated fatty acids (SFAs), and lipoprotein(a) trigger apoptosis in ER-stressed macrophages through a mechanism requiring both CD36 and toll-like receptor 2 (TLR2). In vivo, macrophage apoptosis was induced in SFA-fed, ER-stressed wild-type but not Cd36−/− or Tlr2−/− mice. For atherosclerosis, we combined TLR2 deficiency with that of TLR4, which can also promote apoptosis in ER-stressed macrophages. Advanced lesions of fat-fed Ldlr−/− mice transplanted with Tlr4−/−Tlr2−/− bone marrow were markedly protected from macrophage apoptosis and plaque necrosis compared with WT → Ldlr−/− lesions. These findings provide insight into how atherogenic lipoproteins trigger macrophage apoptosis in the setting of ER stress and how TLR activation might promote macrophage apoptosis and plaque necrosis in advanced atherosclerosis.
Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies.
Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed.
There is a clinical need for new, more effective treatments for chronic wounds in diabetic patients. Lack of epithelial cell migration is a hallmark of nonhealing wounds, and diabetes often involves endothelial dysfunction. Therefore, targeting re-epithelialization, which mainly involves keratinocytes, may improve therapeutic outcomes of current treatments. In this study, we present an integrin-binding prosurvival peptide derived from angiopoietin-1, QHREDGS (glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine), as a therapeutic candidate for diabetic wound treatments by demonstrating its efficacy in promoting the attachment, survival, and collective migration of human primary keratinocytes and the activation of protein kinase B Akt and MAPK p42/44 . The QHREDGS peptide, both as a soluble supplement and when immobilized in a substrate, protected keratinocytes against hydrogen peroxide stress in a dose-dependent manner. Collective migration of both normal and diabetic human keratinocytes was promoted on chitosan-collagen films with the immobilized QHREDGS peptide. The clinical relevance was demonstrated further by assessing the chitosan-collagen hydrogel with immobilized QHREDGS in full-thickness excisional wounds in a db/db diabetic mouse model; QHREDGS showed significantly accelerated and enhanced wound closure compared with a clinically approved collagen wound dressing, peptide-free hydrogel, or blank wound controls. The accelerated wound closure resulted primarily from faster re-epithelialization and increased formation of granulation tissue. There were no observable differences in blood vessel density or size within the wound; however, the total number of blood vessels was greater in the peptide-hydrogeltreated wounds. Together, these findings indicate that QHREDGS is a promising candidate for wound-healing interventions that enhance reepithelialization and the formation of granulation tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.