As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at ∼58% compared with a peak at ∼42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at ∼42%, relatively low compared with that of protein-coding cDNAs.
Inclusion particles in stainless steel were investigated in continuously cast slabs in a full scale caster and ingots cast in several kinds of molds under laboratory conditions. Under such conditions particle size near slab surfaces was seen to be smaller. However, it was increasing with increasing depth going into the slab interior. In order to understand the mechanism of inclusion particle growth we applied four different mathematical models to predict the size distribution of particles. Of the four, the Ostwald ripening model, usually only applied to aqueous colloid phenomena, provided the best correlation with experimental results. This suggests that particles formed during solidification grow by "diffusion coalescence" due to the difference in solubility of neighboring particles which in turn is dependent on particle size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.