A new Super-Kamiokande (SK) search for Supernova Relic Neutrinos (SRNs) was conducted using 2853 live days of data. Sensitivity is now greatly improved compared to the 2003 SK result, which placed a flux limit near many theoretical predictions. This more detailed analysis includes a variety of improvements such as increased efficiency, a lower energy threshold, and an expanded data set. New combined upper limits on SRN flux are between 2.8 and 3.0νe cm −2 s −1 > 16 MeV total positron energy (17.3 MeV Eν).
The results of the third phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first and second phase results. With improved detector calibrations, a full detector simulation, and improved analysis methods, the systematic uncertainty on the total neutrino flux is estimated to be ±2.1%, which is about two thirds of the systematic uncertainty for the first phase of Super-Kamiokande. The observed 8 B solar flux in the 5.0 to 20 MeV total electron energy region is 2.32± 0.04 (stat.) ± 0.05 (sys.) ×10 6 cm −2 sec −1 under the assumption of pure electron-flavor content, in agreement with previous measurements. A combined oscillation analysis 2 is carried out using SK-I, II, and III data, and the results are also combined with the results of other solar neutrino experiments. The best-fit oscillation parameters are obtained to be sin 2 θ12 = 0.30 by adding KamLAND result. In a three-flavor analysis combining all solar neutrino experiments, the upper limit of sin 2 θ13 is 0.060 at 95% C.L.. After combination with KamLAND results, the upper limit of sin 2 θ13 is found to be 0.059 at 95% C.L..
SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0νββ) of130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The0νββPhase I is foreseen for 2017.
We present the result of an indirect search for high energy neutrinos from Weakly Interacting Massive Particle (WIMP) annihilation in the Sun using upward-going muon (upmu) events at Super-Kamiokande. Data sets from SKI-SKIII (3109.6 days) were used for the analysis. We looked for an excess of neutrino signal from the Sun as compared with the expected atmospheric neutrino background in three upmu categories: stopping, non-showering, and showering. No significant excess was observed. The 90% C.L. upper limits of upmu flux induced by WIMPs of 100 GeV c -2 were 6.4 × 10 −15 cm −2 s −1 and 4.0 × 10 −15 cm −2 s −1 for the soft and hard annihilation channels, respectively. These limits correspond to upper limits of 4.5 × 10 −39 cm −2 and 2.7 × 10 −40 cm −2 for spin-dependent WIMP-nucleon scattering cross sections in the soft and hard annihilation channels, respectively.
2A search for neutron-antineutron (n −n) oscillation was undertaken in Super-Kamiokande using the 1,489 day livetime or 2.45 × 10 34 neutron-year exposure data. This process violates both baryon and (baryon−lepton) numbers by two units and is predicted by a large class of hypothetical models where the seesaw mechanism is incorporated to explain the observed tiny neutrino masses and the matter-antimatter asymmetry in the universe. No evidence for n −n oscillation was found, the lower limit of the lifetime for neutrons bound in 16 O, in an analysis that included all of the significant sources of experimental uncertainties, was determined to be 1.9 × 10 32 years at the 90% confidence level. The corresponding lower limit for the oscillation time of free neutrons was calculated to be 2.7 × 10 8 s using a theoretical value of the nuclear suppression factor of 0.517 × 10 23 s −1 and its uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.