A new Super-Kamiokande (SK) search for Supernova Relic Neutrinos (SRNs) was conducted using 2853 live days of data. Sensitivity is now greatly improved compared to the 2003 SK result, which placed a flux limit near many theoretical predictions. This more detailed analysis includes a variety of improvements such as increased efficiency, a lower energy threshold, and an expanded data set. New combined upper limits on SRN flux are between 2.8 and 3.0νe cm −2 s −1 > 16 MeV total positron energy (17.3 MeV Eν).
The NOvA experiment has seen a 4.4σ signal ofν e appearance in a 2 GeVν μ beam at a distance of 810 km. Using 12.33 × 10 20 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27ν μ →ν e candidates with a background of 10.3 and 102ν μ →ν μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters jΔm 2 32 j ¼ 2.48 þ0.11 −0.06 × 10 −3 eV 2 =c 4 and sin 2 θ 23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ CP ¼ π=2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ 23 values in the upper octant by 1.6σ.
We report a search for time variations of the solar 8 B neutrino flux using 5,804 live days of Super-Kamiokande data collected between May 31, 1996, and May 30, 2018. Super-Kamiokande measured the precise time of each solar neutrino interaction over 22 calendar years to search for solar neutrino flux modulations with unprecedented precision. Periodic modulations are searched for in a data set comprised of five-day interval solar neutrino flux measurements with a maximum likelihood method. We also applied the Lomb-Scargle method to this data set to compare it with previous reports. The only significant modulation found is due to the elliptic orbit of the Earth around the Sun. The observed modulation is consistent with astronomical data: we measured an eccentricity of (1.53±0.35) %, and a perihelion shift is (−1.5±13.5) days.
The results of the third phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first and second phase results. With improved detector calibrations, a full detector simulation, and improved analysis methods, the systematic uncertainty on the total neutrino flux is estimated to be ±2.1%, which is about two thirds of the systematic uncertainty for the first phase of Super-Kamiokande. The observed 8 B solar flux in the 5.0 to 20 MeV total electron energy region is 2.32± 0.04 (stat.) ± 0.05 (sys.) ×10 6 cm −2 sec −1 under the assumption of pure electron-flavor content, in agreement with previous measurements. A combined oscillation analysis 2 is carried out using SK-I, II, and III data, and the results are also combined with the results of other solar neutrino experiments. The best-fit oscillation parameters are obtained to be sin 2 θ12 = 0.30 by adding KamLAND result. In a three-flavor analysis combining all solar neutrino experiments, the upper limit of sin 2 θ13 is 0.060 at 95% C.L.. After combination with KamLAND results, the upper limit of sin 2 θ13 is found to be 0.059 at 95% C.L..
We present the result of an indirect search for high energy neutrinos from Weakly Interacting Massive Particle (WIMP) annihilation in the Sun using upward-going muon (upmu) events at Super-Kamiokande. Data sets from SKI-SKIII (3109.6 days) were used for the analysis. We looked for an excess of neutrino signal from the Sun as compared with the expected atmospheric neutrino background in three upmu categories: stopping, non-showering, and showering. No significant excess was observed. The 90% C.L. upper limits of upmu flux induced by WIMPs of 100 GeV c -2 were 6.4 × 10 −15 cm −2 s −1 and 4.0 × 10 −15 cm −2 s −1 for the soft and hard annihilation channels, respectively. These limits correspond to upper limits of 4.5 × 10 −39 cm −2 and 2.7 × 10 −40 cm −2 for spin-dependent WIMP-nucleon scattering cross sections in the soft and hard annihilation channels, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.