We overviewed the pathophysiological features of diabetes and its complications in obese
type 2 diabetic rat models: Otsuka Long-Evans Tokushima fatty (OLETF) rat, Wistar fatty
rat, Zucker diabetic fatty (ZDF) rat and Spontaneously diabetic Torii (SDT) fatty rat.
Pancreatic changes with progression of diabetes were classified into early changes, such
as islet hypertrophy and degranulation of β cells, and degenerative changes, such as islet
atrophy and fibrosis of islet with infiltration of inflammatory cells. Renal lesions in
tubuli and glomeruli were observed, and nodular lesions in glomeruli were notable changes
in OLETF and SDT fatty rats. Among retinal changes, folding and thickening were
interesting findings in SDT fatty rats. A decrease of motor nerve conduction velocity with
progression of diabetes was presented in obese diabetic rats. Other diabetic
complications, osteoporosis and sexual dysfunction, were also observed. Observation of
bone metabolic abnormalities, including decrease of osteogenesis and bone mineral density,
and sexual dysfunction, including hypotestosteronemia and erectile dysfunction, in obese
type 2 diabetic rats have been reported.
These findings indicate that ocular complications of SDT rats are caused by hyperglycaemia. The features of SDT rats indicate their usefulness for the future study of diabetic retinopathy.
Obesity, hyperglycemia, hyperlipidemia, and diabetes-associated complications appear at younger ages (6-8 weeks) in the male Spontaneously Diabetic Torii-Lepr fa (SDTfa/fa) rat than in the male original SDT (SDT-+/+) rat. However, the incidence and progression of diabetes mellitus and diabetic complications in the female SDT-fa/fa rat have not been reported in detail. In the present study, the pathophysiological features of the female SDT-fa/ fa rat were examined, and compared with those of the female SDT-+/+ rat. Female SDT-fa/ fa rats showed hyperphagia, obesity, hyperglycemia, and hyperlipidemia from 5 or 6 weeks of age, and hyperinsulinemia was observed from 5 to 12 weeks. Pathological changes pancreatic islets were observed from 8 weeks. Renal function parameters, such as urine volume and urinary protein, increased from 16 weeks, and pathological findings in the renal tubule, and cataracts were also observed from 16 weeks. Increases of visceral and subcutaneous fats were obvious during the observation period. In pair-feeding with SDT-+/+ rats, SDT-fa/fa rats showed improved hyperglycemia and hypertriglycemia, but hypercholesterolemia was not entirely improved during the study period. Female SDT-fa/fa rats showed diabetes mellitus and diabetes-associated complications at young ages, and fat accumulation was remarkable. Suppression of hyperphagia in SDT-fa/fa rats was effective at improving hyperglycemia and hypertriglycemia. In conclusion, the female SDT-fa/fa rat has the potential to become an important animal model of type 2 diabetes mellitus with obesity, especially for women, for which few models currently exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.